Abstract

In this study, droplet generation in a T-junction fluidic channel device was studied by using electrowetting actuation with the consideration of different droplet forming regimes. For this purpose, the finite element method (FEM) was used to solve the unsteady Naiver–Stokes equation. In addition, the level set method was applied to capture the interface between two phases. It was shown that there was a good agreement between obtained data and other work during the process of droplet generation in the absence of electrowetting actuation which results in the decrease in the size of the droplet with increasing the velocity ratios. In the shearing regime, the effectiveness of electrowetting on the droplet generation frequency as well as droplet size is visible in a T-junction fluidic channel since after applying voltages, specified with nondimensional electrowetting numbers of η=0.5 and 1.2, dispersed phase is pulled out into the oil phase. In fact, by applying the voltage on the top wall, the droplet breakup time was decreased and smaller droplets were produced. Finally, different important parameters such as pressure difference across the interface as well as shear stress exerted from the continuous phase shear stress were examined in detail.

References

1.
Ebrahimi
,
S.
,
Hasanzade-Barforoushi
,
A.
,
Nejat
,
A.
, and
Kowsary
,
F.
,
2014
, “
Numerical Study of Mixing and Heat Transfer in Mixed Electroosmotic/Pressure Driven Flow Through T-Shaped Microchannels
,”
Int. J. Heat Mass Transfer
,
75
, pp.
565
580
.10.1016/j.ijheatmasstransfer.2014.04.004
2.
Lou
,
Q.
,
Yang
,
M.
, and
Xu
,
H.
,
2018
, “
Numerical Investigations of Gas–Liquid Two-Phase Flows in Microchannels
,”
Proc. Inst. Mech. Eng. Part. C
,
232
(
3
), pp.
466
476
.10.1177/0954406217740928
3.
Shajari
,
G.
,
Abbasi
,
M.
, and
Khaki Jamei
,
M.
,
2020
, “
Entrance Length of Oscillatory Flows in Parallel Plate Microchannels
,”
Proc. Inst. Mech. Eng. Part C
, epub.10.1177/0954406220968125
4.
Chaudhury
,
M. K.
,
Chakrabarti
,
A.
, and
Tibrewal
,
T.
,
2014
, “
Coalescence of Drops Near a Hydrophilic Boundary Leads to Long Range Directed Motion
,”
Extreme Mech. Lett.
,
1
, pp.
104
113
.10.1016/j.eml.2014.11.007
5.
Merdasi
,
A.
,
Ebrahimi
,
S.
,
Moosavi
,
A.
,
Shafii
,
M. B.
, and
Kowsary
,
F.
,
2016
, “
Numerical Simulation of Collision Between Two Droplets in the T-Shaped Microchannel With Lattice Boltzmann Method
,”
AIP Adv.
,
6
(
11
), p.
115307
.10.1063/1.4967361
6.
Liu
,
Q.
, and
Xu
,
B.
,
2016
, “
Emerging Droplet Microfluidics. A Unified Mechanics Model of Wettability Gradient-Driven Motion of Water Droplet on Solid Surfaces
,”
Extreme Mech. Lett.
,
9
, pp.
304
309
.10.1016/j.eml.2016.09.004
7.
Hadikhani
,
P.
,
Majidi
,
S.
, and
Afshari
,
A.
,
2020
, “
Numerical Simulation of Droplet Formation in Different Microfluidic Devices
,”
Proc. Inst. Mech. Eng. Part C
,
234
(
19
), pp.
3776
3788
.10.1177/0954406220916480
8.
Asghari
,
E.
,
Moosavi
,
A.
, and
Kazemzadeh Hannani
,
S.
,
2020
, “
Non-Newtonian Droplet-Based Microfluidics Logic Gates
,”
Sci. Rep.
,
10
, p. 9293.10.1038/s41598-020-66337-7
9.
Garstecki
,
P.
,
Fuerstman
,
M. J.
,
Stone
,
H. A.
, and
Whitesides
,
G. M.
,
2006
, “
Formation of Droplets and Bubbles in a Microfluidic T-Junction-Scaling and Mechanism of Break-Up
,”
Lab Chip
,
6
(
3
), pp.
437
446
.10.1039/b510841a
10.
Kamnis
,
S.
, and
Gu
,
S.
,
2005
, “
Numerical Modelling of Droplet Impingement
,”
J. Phys. D Appl. Phys.
,
38
(
19
), pp.
3664
3673
.10.1088/0022-3727/38/19/015
11.
Fuerstman
,
M. J.
,
Garstecki
,
P.
, and
Whitesides
,
G. M.
,
2007
, “
Coding/Decoding and Reversibility of Droplet Trains in Microfluidic Networks
,”
Science
,
315
(
5813
), pp.
828
832
.10.1126/science.1134514
12.
Schindler
,
M.
, and
Ajdari
,
A.
,
2008
, " “
Droplet Traffic in Microfluidic Networks: A Simple Model for Understanding and Designing
,”
Phys. Rev. Lett.
,
100
(
4
), p.
044501
.10.1103/PhysRevLett.100.044501
13.
Gu
,
H.
,
Duits
,
M. H. G.
, and
Mugele
,
F.
,
2011
, " “
Droplets Formation and Merging in Two-Phase Flow Microfluidics
,”
Int. J. Mol. Sci.
,
12
(
4
), pp.
2572
2597
.10.3390/ijms12042572
14.
Thorsen
,
T.
,
Roberts
,
R. W.
,
Arnold
,
F. H.
, and
Quake
,
S. R.
,
2001
, “
Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device
,”
Phys. Rev. Lett.
,
86
(
18
), pp.
4163
4166
.10.1103/PhysRevLett.86.4163
15.
Song
,
H.
, and
Ismagilov
,
R. F.
,
2003
, “
Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents
,”
J. Am. Chem. Soc.
,
125
(
47
), pp.
14613
14619
.10.1021/ja0354566
16.
Chakraborty
,
I.
,
Ricouvier
,
J.
,
Yazhgur
,
P.
,
Tabeling
,
P.
, and
Leshansky
,
A. M.
,
2019
, “
Droplet Generation at Hele-Shaw Microfluidic T-Junction
,”
Phys. Fluids
,
31
(
2
), p.
022010
.10.1063/1.5086808
17.
Christopher
,
G. F.
, and
Anna
,
S. L.
,
2007
, “
Microfluidic Methods for Generating Continuous Droplet Streams
,”
J. Phys. D Appl. Phys.
,
40
(
19
), pp.
R319
R336
.10.1088/0022-3727/40/19/R01
18.
Anna
,
S. L.
,
Bontoux
,
N.
, and
Stone
,
H. A.
,
2003
, “
Formation of Dispersions Using Flow Focusing in Microchannels
,”
Appl. Phys. Lett.
,
82
(
3
), pp.
364
366
.10.1063/1.1537519
19.
Anna
,
S. L.
, and
Mayer
,
H. C.
,
2006
, “
Microscale Tipstreaming in a Microfluidic Flow Focusing Device
,”
Phys. Fluids
,
18
(
12
), p.
121512
.10.1063/1.2397023
20.
Wang
,
K.
,
Lu
,
Y. C.
,
Xu
,
J. H.
,
Tan
,
J.
, and
Luo
,
G. S.
,
2011
, “
Generation of Micromono Dispersed Droplets and Bubbles in the Capillary Embedded T‐Junction Microfluidic Devices
,”
AiCHE J.
,
57
(
2
), pp.
299
306
.10.1002/aic.12263
21.
Liu
,
H.
, and
Zhang
,
Y.
,
2011
, “
Droplet Formation in Microfluidic Cross-Junctions
,”
Phys. Fluids
,
23
(
8
), p.
082101
.10.1063/1.3615643
22.
Moon
,
B. U.
,
Abbasi
,
N.
,
Jones
,
S. G.
,
Hwang
,
D. K.
, and
Tsai
,
S. S. H.
,
2016
, “
Water-in-Water Droplets by Passive Microfluidic Flow Focusing
,”
Anal. Chem.
,
88
(
7
), pp.
3982
3989
.10.1021/acs.analchem.6b00225
23.
Ouedraogo
,
Y.
,
Gjonaj
,
E.
,
Weiland
,
T.
,
Gersem
,
H. D.
,
Steinhausen
,
C.
,
Lamanna
,
G.
,
Weigand
,
B.
,
Preusche
,
A.
,
Dreizler
,
A.
, and
Schremb
,
M.
,
2017
, “
Electrohydrodynamic Simulation of Electrically Controlled Droplet Generation
,”
Int. J. Heat Fluid Flow.
,
64
, pp.
120
128
.10.1016/j.ijheatfluidflow.2017.02.007
24.
Borthakur
,
M. P.
,
Biswas
,
G.
, and
Bandyopadhyay
,
D.
,
2018
, “
Dynamics of Drop Formation From Submerged Orifices Under the Influence of Electric Field
,”
Phys. Fluids
,
30
(
12
), p.
122104
.10.1063/1.5063913
25.
Kim
,
D.
,
Echelmeier
,
A.
,
Cruz Villarreal
,
J.
,
Gandhi
,
S.
,
Quintana
,
S.
,
Egatz-Gomez
,
A.
, and
Ros
,
A.
,
2019
, “
Electric Triggering for Enhanced Control of Droplet Generation
,”
Anal. Chem.
,
91
(
15
), pp.
9792
9799
.10.1021/acs.analchem.9b01449
26.
Mugele
,
F.
, and
Baret
,
J. C.
,
2005
, “
Electrowetting: From Basics to Applications
,”
J. Phys. Condens. Matter
,
17
, pp.
705
774
.10.1088/0953-8984/17/28/R01
27.
Mugele
,
F.
,
Duits
,
M.
, and
van den Ende
,
D.
,
2010
, “
Electrowetting: A Versatile Tool for Drop Manipulation, Generation, and Characterization
,”
Adv. Colloid Interface Sci.
,
161
(
1–2
), pp.
115
123
.10.1016/j.cis.2009.11.002
28.
Zhao
,
Q.
,
Tang
,
B.
,
Dong
,
B.
,
Li
,
H.
,
Zhou
,
R.
,
Guo
,
Y.
,
Dou
,
Y.
,
Deng
,
Y.
,
Groenewold
,
J.
,
Henzen
,
A. V.
, and
Zhou
,
G.
et al.
2018
, “
Electrowetting on Dielectric: Experimental and Model Study of Oil Conductivity on Rupture Voltage
,”
J. Phys. D Appl. Phys
,
51
(
19
), 116128.R1. 10.1088/1361-6463/aabb69
29.
Yan
,
R.
, and
Chen
,
C. L.
,
2019
, “
Condensation Droplet Distribution Regulated by Electrowetting
,”
ASME J. Heat Transfer
,
141
(
11
), p.
111501
.10.1115/1.4044508
30.
Islam
,
M. A.
, and
Tong
,
A. Y.
,
2018
, “
A Numerical Study on Electrowetting Induced Droplet Detachment From Hydrophobic Surface
,”
ASME J. Heat Transfer
,
140
(
5
), p.
52003
.10.1115/1.4038540
31.
Malloggi
,
F.
,
Vanapalli
,
S. A.
,
Gu
,
H.
,
van den Ende
,
D.
, and
Mugele
,
F.
,
2007
, “
Electrowetting-Controlled Droplet Generation in a Microfluidic Flow-Focusing Device
,”
J. Phys. Condens. Matter
,
19
(
46
), p.
462101
.10.1088/0953-8984/19/46/462101
32.
Gu
,
H.
,
Malloggi
,
F.
,
Vanapalli
,
S. V.
, and
Mugele
,
F.
,
2008
, “
Electrowetting-Enhanced Microfluidic Device for Drop Generation
,”
Appl. Phys. Lett.
,
93
(
18
), p.
183507
.10.1063/1.3013567
33.
Gu
,
H.
,
Duits
,
M. H. G.
, and
Mugele
,
F. A.
,
2010
, “
Hybrid Microfluidic Chip With Electrowetting Functionality Using Ultraviolet (UV)-Curablepolymer
,”
Lab Chip
,
10
(
12
), pp.
1550
1556
.10.1039/c001524e
34.
Huang
,
D.
,
Qian
,
F.
,
Zhang
,
W.
,
Li
,
W.
,
Chuan
,
R.
,
Wang
,
Q.
, and
Zhao
,
C.
,
2020
, “
An Electromechanical Model for Electrowetting With Finite Droplet Size
,”
ASME J. Heat Transfer
,
142
(
7
), p.
072133
.10.1115/1.4047209
35.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C. A.
,
1992
, “
Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
36.
Yan
,
J.
,
Lin
,
S.
,
Bazilevs
.
Y.
,
Wagner
,
G. J.
,
2018
, “
Isogeometric Analysis of Multi-Phase Flows With Surface Tension and With Application to Dynamics of Rising Bubbles
,”
Comput. Fluids
, 179, pp. 777–789.10.1016/j.compfuid.2018.04.017
37.
Bashir
,
S.
,
Rees
,
J. M.
, and
Zimmerman
,
W. B.
,
2011
, “
Zimmerman WB. Simulations of Microfluidic Droplet Formation Using the Two-Phase Level Set Method
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4733
4741
.10.1016/j.ces.2011.06.034
38.
Sen
,
U.
,
Chatterjee
,
S.
,
Sen
,
S.
,
Tiwari
,
M. K.
,
Mukhopadhyay
,
A.
, and
Ganguly
,
R.
,
2017
, “
Dynamics of Magnetic Modulation of Ferrofluid Droplets for Digital Microfluidic Applications
,”
J. Magn. Magn. Mater.
,
421
, pp.
165
176
.10.1016/j.jmmm.2016.07.048
You do not currently have access to this content.