Abstract

Boiling heat transfer is extensively used in various industrial applications to efficiently dissipate a large amount of heat by maintaining low surface to fluid temperature differences. The maximum heat flux dissipated during boiling is limited by the critical heat flux (CHF). Difficulties in visualizing the boiling process and monitoring surface temperature make it difficult to identify the impending CHF condition. As a result, larger factors of safety are employed, and the equipment is operated at considerably lower heat fluxes. This study focuses on identifying acoustic signatures of different nucleate boiling regimes. The bubble nucleation and coalescence along with bubble collapse lead to variation in acoustic emission patterns during boiling. In this work, acoustic signatures representative of the impending CHF condition are identified during pool boiling of water over plain and enhanced copper substrates. It was observed that sound was dominant in two frequency regions (400–500 Hz dominant throughout the nucleate boiling, and 100–200 Hz dominant at heat fluxes > 100 W/cm2). However, just before CHF, a sudden drop in amplitude was observed in the high frequency region (400–500 Hz), while the amplitude in low frequency region (100–200 Hz) continued to rise. This combination of the amplitude trend has potential to predict the approaching CHF condition. This is the first study that correlates high-speed images with the acoustic trends at different stages of nucleate boiling and compares experimental frequency with Minnaert frequency for coalescing bubbles.

References

References
1.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
,
25
(
10
), pp.
1472
1487
.10.1016/j.applthermaleng.2004.09.014
2.
Kandlikar
,
S. G.
,
2017
, “
Enhanced Macroconvection Mechanism With Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance
,”
ASME J. Heat Transfer
,
139
(
5
), p. 051501.10.1115/1.4035247
3.
Rishi
,
A. M.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Improving Liquid Supply Pathways on Graphene Oxide Coated Surfaces for Enhanced Pool Boiling Heat Transfer Performance
,”
ASME
Paper No. ICNMM2018-7714.10.1115/ICNMM2018-7714
4.
Rishi
,
A. M.
,
Gupta
,
A.
, and
Kandlikar
,
S. G.
,
2018
, “
Improving Aging Performance of Electrodeposited Copper Coatings During Pool Boiling
,”
Appl. Therm. Eng.
,
140
, pp.
406
414
.10.1016/j.applthermaleng.2018.05.061
5.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
, and
Gupta
,
A.
,
2019
, “
Improved Wettability of Graphene Nanoplatelets (GNP)/Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
462
472
.10.1016/j.ijheatmasstransfer.2018.11.169
6.
Minnaert
,
M.
,
1933
, “
XVI. On Musical Air-Bubbles and the Sounds of Running Water
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
16
(
104
), pp.
235
248
.10.1080/14786443309462277
7.
Manasseh
,
R.
,
Riboux
,
G.
, and
Risso
,
F.
,
2008
, “
Sound Generation on Bubble Coalescence Following Detachment
,”
Int. J. Multiphase Flow
,
34
(
10
), pp.
938
949
.10.1016/j.ijmultiphaseflow.2008.03.005
8.
Kracht
,
W.
, and
Finch
,
J. A.
,
2009
, “
Using Sound to Study Bubble Coalescence
,”
J. Colloid Interface Sci.
,
332
(
1
), pp.
237
245
.10.1016/j.jcis.2008.12.025
9.
Ponter
,
A. B.
, and
Haigh
,
C. P.
,
1969
, “
Sound Emission and Heat Transfer in Low Pressure Pool Boiling
,”
Int. J. Heat Mass Transfer
,
12
(
4
), pp.
413
428
.10.1016/0017-9310(69)90137-9
10.
Osborne
,
M. F. M.
, and
Holland
,
F. H.
,
1947
, “
The Acoustical Concomitants of Cavitation and Boiling, Produced by a Hot Wire. I
,”
J. Acoust. Soc. Am.
,
19
(
1
), pp.
13
20
.10.1121/1.1916397
11.
Nishant Ranjan Sinha
,
K.
,
Ranjan
,
D.
,
Raza, Md
,
Q.
,
Kumar
,
N.
,
Kaner
,
S.
,
Thakur
,
A.
, and
Raj
,
R.
,
2019
, “
In-Situ Acoustic Detection of Critical Heat Flux for Controlling Thermal Runaway in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
138
, pp.
135
143
.10.1016/j.ijheatmasstransfer.2019.04.029
12.
Aoki
,
T.
, and
Welty
,
J. R.
,
1970
, “
Frequency Distribution of Boiling-Generated Sound
,”
ASME J. Heat Transfer
,
92
(
3
), pp.
542
544
.10.1115/1.3449713
13.
Westwater
,
J. W.
,
Lowery
,
A. J.
, and
Pramuk
,
F. S.
,
1955
, “
Sound of Boiling
,”
Science
,
122
(
3164
), pp.
332
333
.10.1126/science.122.3164.332-a
14.
Schwartz
,
F. L.
, and
Siler
,
L. G.
,
1965
, “
Correlation of Sound Generation and Heat Transfer in Boiling
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
436
438
.10.1115/1.3689134
15.
Singh
,
S.
, and
Mohanty
,
A. R.
,
2018
, “
Measurement of Boiling Liquid Levels by Decomposition of Sound Waves in a Waveguide
,”
Appl. Acoust.
,
129
, pp.
248
257
.10.1016/j.apacoust.2017.08.005
16.
Tang
,
J.
,
Xie
,
G.
,
Bao
,
J.
,
Mo
,
Z.
,
Liu
,
H.
, and
Du
,
M.
,
2018
, “
Experimental Study of Sound Emission in Subcooled Pool Boiling on a Small Heating Surface
,”
Chem. Eng. Sci.
,
188
, pp.
179
191
.10.1016/j.ces.2018.05.002
17.
Osborne
,
M. F. M.
,
1947
, “
The Acoustical Concomitants of Cavitation and Boiling, Produced by a Hot Wire. II
,”
J. Acoust. Soc. Am.
,
19
(
1
), pp.
21
29
.10.1121/1.1916398
18.
Rishi
,
A. M.
,
Kandlikar
,
S. G.
,
Rozati
,
S. A.
, and
Gupta
,
A.
,
2020
, “
Effect of Ball Milled and Sintered Graphene Nanoplatelets-Copper (GNP-Cu) Composite Coatings on Bubble Dynamics and Pool Boiling Heat Transfer
,”
Adv. Eng. Mater.
,
22
(
7
), p.
1901562
.10.1002/adem.201901562
19.
Patil
,
C.
, and
Kandlikar
,
S.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.10.1016/j.ijheatmasstransfer.2014.08.063
20.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
21.
Emery
,
T. S.
, and
Kandlikar
,
S. G.
,
2017
, “
Pool Boiling With Four Non-Ozone Depleting Refrigerants and Comparison With Previously Established Correlations
,”
Exp. Therm. Fluid Sci.
,
85
, pp.
132
139
.10.1016/j.expthermflusci.2017.02.027
22.
Nugrahani
,
T. A.
,
Adi
,
K.
, and
Suseno
,
J. E.
,
2018
, “
Information System Prediction With Weighted Moving Average (WMA) Method and Optimization Distribution Using Vehicles Routing Problem (VRP) Model for Batik Product
,”
E3S Web Conf.
,
73
, p.
13004
.10.1051/e3sconf/20187313004
23.
Nikolovska
,
A.
,
Manasseh
,
R.
, and
Ooi
,
A.
,
2007
, “
On the Propagation of Acoustic Energy in the Vicinity of a Bubble Chain
,”
J. Sound Vib.
,
306
(
3–5
), pp.
507
523
.10.1016/j.jsv.2007.05.025
You do not currently have access to this content.