Abstract

This work is a numerical study of microfluidic cooling of integrated circuits (ICs), using embedded micropin-fins on a silicon chip. The study considers non-uniform chip heat fluxes (250–500 W/cm2) and variable pin fin density using DI water as coolant. A parametric analysis was performed, using the theory of design of experiments (DoE) in order to find the best performing configurations. The proposed factorial design considers six geometrical parameters resulting in 64 microfluidic cooling configurations. The pressure drop and average chip temperatures were obtained for each model to determine the importance of input parameters utilizing a statistical approach. Results from this optimization point to different suitable configurations in which the maximum device temperature is below 60 °C, under moderate pressure drops below 80 kPa. This work takes advantage of numerical models and statistical approaches to seek optimal designs of microfluidic cooling systems and to identify key parameters that have influence on their global performance. In addition, alternative configurations are also assessed for cases in which thermal or hydraulic parameters could be traded-off depending on the application. The results from this study are helpful for the design of chip thermal management with nonuniform power distribution.

References

1.
Ramm
,
P.
,
Klumpp
,
A.
,
Weber
,
J.
, and
Taklo
,
M. M. V.
,
2010
, “
3D System-on-Chip Technologies for More Than Moore Systems
,”
Microsyst. Technol.
,
16
(
7
), pp.
1051
1055
.10.1007/s00542-009-0976-1
2.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, ” “
Flow Boiling in Micro-Channels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
3.
Wei
,
J.
,
2008
, “
Challenges in Cooling Design on CPU Packages for High-Performance Services
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.10.1080/01457630701686727
4.
Sarvey
,
T. E.
,
Hu
,
Y.
,
Green
,
C. E.
,
Kottke
,
P. A.
,
Woodrum
,
D. C.
,
Joshi
,
Y.
,
Fedorov
,
A. G.
,
Sitaraman
,
S. K.
, and
Bakir
,
M. S.
,
2017
, “
Integrated Circuit Cooling Using Heterogeneous Micro Pin-Fin Arrays for Non-Uniform Power Maps
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
7
(
9
), pp.
1465
1475
.10.1109/TCPMT.2017.2704525
5.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T. E.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A. G.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single-Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Micro Gaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
6.
Lorenzini
,
D.
, and
Joshi
,
Y.
,
2019
, “
Numerical Modeling and Experimental Validation of Two-Phase Microfluidic Cooling in Silicon Devices for Vertical Integration of Microelectronics
,”
Int. J. Heat Mass Transfer
,
138
, pp.
194
207
.10.1016/j.ijheatmasstransfer.2019.04.036
7.
Feng
,
S.
,
Yan
,
Y.
,
Li
,
H.
,
Yang
,
Z.
,
Li
,
L.
, and
Zhang
,
L.
,
2019
, “
Theoretical and Numerical Investigation of Embedded Microfluidic Thermal Management Using Gradient Distribution Micro Pin fin Arrays
,”
Appl. Therm. Eng.
,
153
, pp.
748
760
.10.1016/j.applthermaleng.2019.03.017
8.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2019
, “
Thermo-Hydraulic Performance Evaluation of a Novel Design Recharging Microchannel
,”
Int. J. Therm. Sci.
,
135
, pp.
459
470
.10.1016/j.ijthermalsci.2018.09.006
9.
Wu
,
R.
,
Zhang
,
X.
,
Fan
,
Y.
,
Hu
,
R.
, and
Luo
,
X.
,
2019
, “
A Bi-Layer Compact Thermal Model for Uniform Chip Temperature Control With Non-Uniform Heat Sources by Genetic-Algorithm Optimized Microchannel Cooling
,”
Int. J. Therm. Sci.
,
136
, pp.
337
346
.10.1016/j.ijthermalsci.2018.10.047
10.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Characterization of Hierarchical Manifold Microchannel Heat Sinks Arrays Under Simultaneous Background and Hotspot Heating Conditions
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1289
1301
.10.1016/j.ijheatmasstransfer.2018.05.127
11.
Wang
,
Y.
,
Shin
,
J. H.
,
Woodcock
,
C.
,
Yu
,
X.
, and
Peles
,
Y.
,
2018
, “
Experimental and Numerical Study About Local Heat Transfer in a Microchannel With a Pin Fin
,”
Int. J. Heat Mass Transfer
,
121
, pp.
534
546
.10.1016/j.ijheatmasstransfer.2018.01.034
12.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2018
, “
Hotspot Management Using a Hybrid Heat Sink With Stepped Pin-Fins
,”
Int. J. Therm. Sci.
,
134
, pp.
27
39
.10.1016/j.ijthermalsci.2018.07.043
13.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2018
, “
Review on Heat a Fluid Flow in Micro Pin Fin Heat Sinks Under Single-Phase and Two-Phase Flow Conditions
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
3
), pp.
153
197
.10.1080/15567265.2018.1475525
14.
Wang
,
S.
,
Yin
,
Y.
,
Hu
,
C.
, and
Rezai
,
P.
,
2018
, “
3D Integrated Circuit Cooling With Microfluidics
,”
Micromachines
,
9
(
6
), p.
287
.10.3390/mi9060287
15.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2017
, “
Performance Analysis of Double-Layer Microchannel Heat Sinks Under Non-Uniform Heating Conditions With Random Hotspots
,”
Micromachines
,
8
(
2
), p.
54
.10.3390/mi8020054
16.
Xu
,
S.
,
Wang
,
W.
,
Fang
,
K.
, and
Wong
,
C. N.
,
2015
, “
Heat Transfer Performance of a Fractal Silicon Microchannel Heat Sink Subjected to Pulsation Flow
,”
Int. J. Heat Mass Transfer
,
81
, pp.
33
40
.10.1016/j.ijheatmasstransfer.2014.10.002
17.
Tummala
,
R. R.
,
2019
,
Fundamentals of Device and Systems Packaging: Technologies and Applications
, 2nd ed.,
Mc Graw Hill
,
New York
, Chap.
3
.
18.
Montgomery
,
D. C.
,
2004
,
Analysis and Design of Experiments
, 2nd ed.,
Limusa-Wiley
,
New York
, pp.
170
350
.
You do not currently have access to this content.