Abstract

In this paper, we undertake an analytical study of stresses (augmented and Onsager–Burnett) and entropy generation for the plane Poiseuille flow problem, and their variation with Knudsen number. The gas flow is assumed to be 2D laminar, fully developed, compressible, and isothermal; these assumptions make the problem amenable to analytical treatment. The variation of stresses and entropy generation has been analyzed over a large range of Knudsen number. The magnitude of stresses and entropy generation at a particular position in the channel has been considered. It is found that the augmented and OBurnett normal stresses are of opposite signs to the corresponding Navier–Stokes stresses, while the magnitude of the net normal stress increases with Knudsen number. The magnitude of the augmented Burnett shear stress is insignificant as compared to the augmented Burnett normal stresses. A close match between the augmented and OBurnett normal stresses has been found at low Knudsen number. However, an opposite variation has been observed between the augmented and Onsager shear stresses at high Knudsen number. A good comparison of the normalized mass flow rate with the reported value in the literature helps to validate our analysis. A minimum in the variation of normalized entropy generation against the Knudsen number (Kn) is observed at Kn close to unity, and is being reported for the first time. The magnitude of net entropy generation from the summation of Navier–Stokes and augmented Burnett stresses is found to be positive, even in the transition regime of gas flow. Further, an appearance of minimum or maximum in normalized net shear stress versus Knudsen number, depending upon the lateral position in the microchannel, has also been observed. Altogether, this analysis supports the validity of the Navier–Stokes equation with modified constitutive expression, even for higher Knudsen numbers. Moreover, the significant terms of Burnett stress are pointed out by the analysis, which can help in developing reduced-order model for these equations.

References

1.
Ho
,
C.-M.
, and
Tai
,
Y.-C.
,
1998
, “
Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
579
612
.10.1146/annurev.fluid.30.1.579
2.
Singh
,
N.
,
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2017
, “
Derivation of Stable Burnett Equations for Rarefied Gas Flows
,”
Phys. Rev. E
,
96
(
1
), p.
013106
.10.1103/PhysRevE.96.013106
3.
Akintunde
,
A.
, and
Petculescu
,
A.
,
2014
, “
Infrasonic Attenuation in the Upper Mesosphere–Lower Thermosphere: A Comparison Between Navier–Stokes and Burnett Predictions
,”
J. Acoust. Soc. Am.
,
136
(
4
), pp.
1483
1486
.10.1121/1.4894683
4.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
,
1997
, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
167
178
.10.1109/84.585795
5.
Weng
,
C.-I.
,
Li
,
W.-L.
, and
Hwang
,
C.-C.
,
1999
, “
Gaseous Flow in Microtubes at Arbitrary Knudsen Numbers
,”
Nanotechnology
,
10
(
4
), pp.
373
379
.10.1088/0957-4484/10/4/302
6.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2006
,
Microflows and Nanoflows: Fundamentals and Simulation
,
29
,
Springer Science & Business Media
,
Berlin
.
7.
Dongari
,
N.
,
Agrawal
,
A.
, and
Agrawal
,
A.
,
2007
, “
Analytical Solution of Gaseous Slip Flow in Long Microchannels
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3411
3421
.10.1016/j.ijheatmasstransfer.2007.01.048
8.
Cercignani
,
C.
, and
Daneri
,
A.
,
1963
, “
Flow of a Rarefied Gas Between Two Parallel Plates
,”
J. Appl. Phys.
,
34
(
12
), pp.
3509
3513
.10.1063/1.1729249
9.
Cercignani
,
C.
,
Lampis
,
M.
, and
Lorenzani
,
S.
,
2004
, “
Variational Approach to Gas Flows in Microchannels
,”
Phys. Fluids
,
16
(
9
), pp.
3426
3437
.10.1063/1.1764700
10.
Sharipov
,
F.
,
2002
, “
Application of the Cercignani–Lampis Scattering Kernel to Calculations of Rarefied Gas Flows. II. plane Flow Between Two Parallel Plates
,”
Eur. J. Mech.-B/Fluids
,
21
(
1
), pp.
113
123
.10.1016/S0997-7546(01)01160-8
11.
Xu
,
K.
,
2003
, “
Super-Burnett Solutions for Poiseuille Flow
,”
Phys. Fluids
,
15
(
7
), pp.
2077
2080
.10.1063/1.1577564
12.
Xu
,
K.
, and
Li
,
Z.
,
2004
, “
Microchannel Flow in the Slip Regime: Gas-Kinetic BGK–Burnett Solutions
,”
J. Fluid Mech.
,
513
, pp.
87
110
.10.1017/S0022112004009826
13.
Ohwada
,
T.
, and
Xu
,
K.
,
2004
, “
The Kinetic Scheme for the Full-Burnett Equations
,”
J. Comput. Phys.
,
201
(
1
), pp.
315
332
.10.1016/j.jcp.2004.05.017
14.
Xu
,
K.
, and
Josyula
,
E.
,
2006
, “
Gas-Kinetic Scheme for Rarefied Flow Simulation
,”
Math. Comput. Simul.
,
72
(
2–6
), pp.
253
256
.10.1016/j.matcom.2006.05.028
15.
Burnett
,
D.
,
1935
, “
The Distribution of Velocities in a Slightly Non-Uniform Gas
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
385
430.
10.1112/plms/s2-39.1.385
16.
Chapman
,
S.
, and
Cowling
,
T.
,
1970
,
The Mathematical Theory of Non-Uniform Gases, Cambridge Math
,
Cambridge University Press
,
Cambridge, UK
.
17.
Zhong
,
X.
,
MacCormack
,
R. W.
, and
Chapman
,
D. R.
,
1993
, “
Stabilization of the Burnett Equations and Application to Hypersonic flows
,”
AIAA J.
,
31
(
6
), pp.
1036
1043
.10.2514/3.11726
18.
Agarwal
,
R. K.
,
Yun
,
K.-Y.
, and
Balakrishnan
,
R.
,
2001
, “
Beyond Navier–Stokes: Burnett Equations for Flows in the Continuum–Transition Regime
,”
Phys. Fluids
,
13
(
10
), pp.
3061
3085
.10.1063/1.1397256
19.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2019
,
Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics
,
Springer
,
Berlin
.
20.
Singh
,
N.
, and
Agrawal
,
A.
,
2014
, “
The Burnett Equations in Cylindrical Coordinates and Their Solution for Flow in a Microtube
,”
J. Fluid Mech.
,
751
, pp.
121
141
.10.1017/jfm.2014.290
21.
Rath
,
A.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2018
, “
A Perturbation-Based Solution of Burnett Equations for Gaseous Flow in a Long Microchannel
,”
J. Fluid Mech.
,
844
, pp.
1038
1051
.10.1017/jfm.2018.233
22.
Sreekanth
,
A.
,
1969
, “
Slip Flow Through Long Circular Tubes
,”
Proceedings of Sixth International Symposium Rarefied Gas Dynamics
, Vol.
1
, New York, pp.
667
680
.
23.
Singh
,
N.
,
Dongari
,
N.
, and
Agrawal
,
A.
,
2014
, “
Analytical Solution of Plane Poiseuille Flow Within Burnett Hydrodynamics
,”
Microfluid. Nanofluid.
,
16
(
1–2
), pp.
403
412
.10.1007/s10404-013-1224-7
24.
Carr
,
R. W.
,
2007
, “
Quantifying Non-Equilibrium in Hypersonic Flows using Entropy Generation
,” Air Force Institute of Technology, Wright-Patterson AFB, OH.
25.
Ejtehadi
,
O.
,
Esfahani
,
J. A.
, and
Roohi
,
E.
,
2012
, “
Compressibility and Rarefaction Effects on Entropy and Entropy Generation in Micro/Nano Couette Flow Using DSMC
,”
J. Phys. Conf. Ser.
,
362
, p.
012008
.10.1088/1742-6596/362/1/012008
26.
Schamberg
,
R.
,
1947
, “
The Fundamental Differential Equations and the Boundary Conditions for High Speed Slip-Flow, and Their Application to Several Specific Problems
,” Ph.D. thesis,
California Institute of Technology
,
Pasadena, CA
.
27.
Deissler
,
R.
,
1964
, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
(
6
), pp.
681
694
.10.1016/0017-9310(64)90161-9
28.
Hemadri
,
V.
,
Varade
,
V. V.
,
Agrawal
,
A.
, and
Bhandarkar
,
U.
,
2016
, “
Investigation of Rarefied Gas Flow in Microchannels of Non-Uniform Cross Section
,”
Phys. Fluids
,
28
(
2
), p.
022007
.10.1063/1.4942183
29.
Demsis
,
A.
,
Prabhu
,
S.
, and
Agrawal
,
A.
,
2010
, “
Influence of Wall Conditions on Friction Factor for Flow of Gases Under Slip Condition
,”
Exp. Thermal Fluid Sci.
,
34
(
8
), pp.
1448
1455
.10.1016/j.expthermflusci.2010.07.008
30.
Niazmand
,
H.
,
Renksizbulut
,
M.
, and
Saeedi
,
E.
,
2008
, “
Developing Slip-Flow and Heat Transfer in Trapezoidal Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6126
6135
.10.1016/j.ijheatmasstransfer.2008.04.007
31.
Schrock
,
C. R.
,
2005
, “
Entropy Generation as a Means of Examining Continuum Breakdown
,” Air Force Institute of Technology, Wright-Patterson AFB, OH.
32.
Schrock
,
C.
,
McMullan
,
R.
, and
Camberos
,
J.
,
2005
, “
Continuum Onset Parameter Based on Entropy Gradients Using Boltzmann's H-Theorem
,”
AIAA
Paper No. 2005-967.10.2514/6.2005-967
33.
Schrock
,
C.
,
McMullan
,
R.
, and
Camberos
,
J.
,
2005
, “
Calculation of Entropy Generation Rates Via DSMC With Application to Continuum/Equilibrium Onset
,”
AIAA
Paper No. 2005-4830.10.2514/6.2005-4830
34.
García-Colín
,
L. S.
,
Velasco
,
R. M.
, and
Uribe
,
F. J.
,
2008
, “
Beyond the Navier–Stokes Equations: Burnett Hydrodynamics
,”
Phys. Rep.
,
465
(
4
), pp.
149
189
.10.1016/j.physrep.2008.04.010
You do not currently have access to this content.