Abstract

A simple analytical calculation scheme to determine near field radiation through decomposing an emission domain into lots of thin thermal current sheets is presented. Through finding the orthogonal modes of thermal current of each thin layer, the thin current sheets can be treated as radiation sources of electromagnetic waves with determined analytical solutions. The outgoing electromagnetic waves from each thin current sheets can be either in transverse electric (TE) or transverse magnetic (TM) modes depending on the orientations of the current in the thin current sheets with respect to the directions of amplitude modulations of the orthogonal modes. Electromagnetic waves arriving to a collection domain are related to the electromagnetic waves leaving from each thin current thermal sheet with transfer coefficients. Transfer coefficient for TE and TM waves can be determined analytically with transfer matrix method or scattering matrix methods. Compared with existing dyadic Green's function method, the new calculation scheme allows material and temperature variations along one direction of the emission domain based on determined analytical expressions of TE and TM waves leaving from each thin current sheets. The simple calculation scheme is especially useful in near field radiation of layered structures with different material such as hyperbolic material with negative refractive indices. With this new approach, we recovered analytical solutions of near field radiation between two semi-infinite domains with uniform temperature and derived closed form solution of near field radiation between two semi-infinite domains with temperature profiles with/without laminated structures.

References

References
1.
Venkataram
,
P. S.
,
Molesky
,
S.
,
Jin
,
W. L.
, and
Rodriguez
,
A. W.
,
2020
, “
Fundamental Limits to Radiative Heat Transfer: The Limited Role of NanoStructuring in the Near-Field
,”
Phys Rev Lett
,
124
(
1
), p.
013904
.10.1103/PhysRevLett.124.013904
2.
Wang
,
L.
,
Bie
,
M. L.
,
Cai
,
W.
,
Ge
,
L. X.
,
Ji
,
Z. C.
,
Jia
,
Y. L.
,
Gong
,
K.
,
Zhang
,
X. Z.
,
Wang
,
J. Q.
, and
Xu
,
J. J.
,
2019
, “
Giant Near-Field Radiative Heat Transfer Between Ultrathin Metallic Films
,”
Opt Express
,
27
(
25
), pp.
36790
36798
.10.1364/OE.27.036790
3.
Salihoglu
,
H.
, and
Xu
,
X. F.
,
2019
, “
Near-Field Radiative Heat Transfer Enhancement Using Natural Hyperbolic Material
,”
J. Quant. Spectrosc. Radiat. Transfer
,
222–223
, pp.
115
121
.10.1016/j.jqsrt.2018.10.022
4.
Zhong
,
L. Y.
,
Zhao
,
Q. M.
,
Wang
,
T. B.
,
Yu
,
T. B.
,
Liao
,
Q. H.
, and
Liu
,
N. H.
,
2018
, “
Near-Field Radiative Heat Transfer Between Graphene/Silicon Carbide Multilayers
,” ASME
J Heat Trans
,
140
(
7
), p.
072701
.10.1115/1.4039221
5.
Taflove
,
A.
, and
Hagness
,
S. C.
,
2005
,
Computational Electrodynamics: The Finite Difference Time-Domain Method
,
Artech House
,
Boston, MA
.
6.
Ammari
,
H.
,
2008
,
Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-Claude Nédélec
,
Springer
,
eBrlin; New York
.
7.
Zhang
,
Z. M.
,
2007
,
Nano/Microscale Heat Transfer
,
McGraw-Hill
,
New York
.
8.
Novotny
,
L.
, and
Hecht
,
B.
,
2012
,
Principles of Nano-Optics
,
Cambridge University Press
,
Cambridge, UK
.
9.
Messina
,
R.
, and
Antezza
,
M.
,
2011
, “
Scattering-Matrix Approach to Casimir-Lifshitz Force and Heat Transfer Out of Thermal Equilibrium Between Arbitrary Bodies
,”
Phys. Rev. A
,
84
(
4
), p.
04102
.10.1103/PhysRevA.84.042102
10.
Song
,
B.
,
Fiorino
,
A.
,
Meyhofer
,
E.
, and
Reddy
,
P.
,
2015
, “
Near-Field Radiative Thermal Transport: From Theory to Experiment
,”
AIP Adv.
,
5
(
5
), p. 053503.10.1063/1.4919048
11.
Rodriguez
,
A. W.
,
Reid
,
M. T. H.
, and
Johnson
,
S. G.
,
2013
, “
Fluctuating-Surface-Current Formulation of Radiative Heat Transfer: Theory and Applications
,”
Phys. Rev. B
,
88
(
5
), p.
054305
.10.1103/PhysRevB.88.054305
12.
Datas
,
A.
,
Hirashima
,
D.
, and
Hanamura
,
K.
,
2013
, “
FDTD Simulation of Near-Field Radiative Heat Transfer Between Thin Films Supporting Surface Phonon Polaritons: Lessons Learned
,”
J. Therm. Sci. Tech.-Jpn.
,
8
(
1
), pp.
91
105
.10.1299/jtst.8.91
13.
Edalatpour
,
S.
, and
Francoeur
,
M.
,
2014
, “
The Thermal Discrete Dipole Approximation (T-DDA) for Near-Field Radiative Heat Transfer Simulations in Three-Dimensional Arbitrary Geometries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
133
, pp.
364
373
.10.1016/j.jqsrt.2013.08.021
14.
Wen
,
S. B.
,
2010
, “
Direct Numerical Simulation of Near Field Thermal Radiation Based on Wiener Chaos Expansion of Thermal Fluctuating Current
,”
A
SME J. Heat Transfer
,
132
(
7
), p.
072704
.10.1115/1.4000995
15.
Joannopoulos
,
J. D.
,
2008
,
Photonic Crystals: Molding the Flow of Light
,
Princeton University Press
,
Princeton, NJ
.
16.
Guo
,
Y.
, and
Jacob
,
Z. B.
,
2013
, “
Thermal Hyperbolic Metamaterials
,”
Opt. Express
,
21
(
12
), pp.
15014
15019
.10.1364/OE.21.015014
17.
Schmidt
,
C. H.
,
Leibfritz
,
M. M.
, and
Eibert
,
T. F.
,
2007
, “
Near-Field Far-Field Transformation Exploiting the Benefits of Plane Wave Expansion and Diagonal Translation Operators
,”
2007 European Microwave Conference
, Vols. 1–4, Munich, Germany, Oct. 9–12, pp.
568
571
.
18.
Jackson
,
J. D.
,
1999
,
Classical Electrodynamics
,
Wiley
,
New York
.
19.
Zolla
,
F. D R.
,
2012
,
Foundations of Photonic Crystal Fibres
,
Imperial College Press; Distributed by World Scientific Pub
,
Hackensack, NJ
.
20.
Yeh
,
P.
,
2005
,
Optical Waves in Layered Media
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.