Abstract

In this work, a numerical model to predict the heat accumulation of fused silica induced by ultrafast laser scanning is put forward, which is composed of an ionization model and a steady electromagnetic model. The ionization model is to obtain the energy deposition induced by single laser pulse. Subsequently, the temperature evolution during ultrafast laser scanning is estimated through the superposition of the heat impact by each laser pulse. The ablated profile from experiments is compared with the predicted profile of heat-affected zone (HAZ) to illustrate the nonthermal processing window, which is validated by Raman spectrum. The analysis of the parametric sensitivity on heat accumulation is carried out, and the laser pulse energy is the dominating factor.

References

References
1.
Sugioka
,
K.
,
2017
, “
Progress in Ultrafast Laser Processing and Future Prospects
,”
Nanophotonics
,
6
(
2
), pp.
393
413
.10.1515/nanoph-2016-0004
2.
Sugioka
,
K.
, and
Cheng
,
Y.
,
2014
, “
Ultrafast Lasers-Reliable Tools for Advanced Materials Processing
,”
Light: Sci. Appl.
,
3
(
4
), pp.
e149
e149
.10.1038/lsa.2014.30
3.
Ben-Yakar
,
A.
, and
Byer
,
R. L.
,
2002
, “
Femtosecond Laser Machining of Fluidic Microchannels for Miniaturized Bioanalytical Systems
,”
Proc. SPIE
, 4637, p.
212
.10.1117/12.470625
4.
Streltsov
,
A. M.
, and
Borrelli
,
N. F.
,
2002
, “
Study of Femtosecond-Laser-Written Waveguides in Glasses
,”
Josa B
,
19
(
10
), pp.
2496
2504
.10.1364/JOSAB.19.002496
5.
Cheng
,
J.
,
Perrie
,
W.
,
Edwardson
,
S.
,
Fearon
,
E.
,
Dearden
,
G.
, and
Watkins
,
K.
,
2009
, “
Effects of Laser Operating Parameters on Metals Micromachining With Ultrafast Lasers
,”
Appl. Surface Sci.
,
256
(
5
), pp.
1514
1520
.10.1016/j.apsusc.2009.09.013
6.
Di Niso
,
F.
,
Gaudiuso
,
C.
,
Sibillano
,
T.
,
Mezzapesa
,
F. P.
,
Ancona
,
A.
, and
Lugarà
,
P. M.
,
2014
, “
Role of Heat Accumulation on the Incubation Effect in Multi-Shot Laser Ablation of Stainless Steel at High Repetition Rates
,”
Opt. Exp.
,
22
(
10
), pp.
12200
12210
.10.1364/OE.22.012200
7.
Vogel
,
A.
,
Noack
,
J.
,
Hüttman
,
G.
, and
Paltauf
,
G.
,
2005
, “
Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues
,”
Appl. Phys. B
,
81
(
8
), pp.
1015
1047
.10.1007/s00340-005-2036-6
8.
Miyamoto
,
I.
,
Cvecek
,
K.
,
Okamoto
,
Y.
, and
Schmidt
,
M.
,
2014
, “
Internal Modification of Glass by Ultrashort Laser Pulse and Its Application to Microwelding
,”
Appl. Phys. A
,
114
(
1
), pp.
187
208
.10.1007/s00339-013-8115-3
9.
Sun
,
M.
,
Eppelt
,
U.
,
Schulz
,
W.
, and
Zhu
,
J.
,
2013
, “
Role of Thermal Ionization in Internal Modification of Bulk Borosilicate Glass With Picosecond Laser Pulses at High Repetition Rates
,”
Opt. Mater. Exp.
,
3
(
10
), pp.
1716
1726
.10.1364/OME.3.001716
10.
Rahaman
,
A.
,
Kar
,
A.
, and
Yu
,
X.
,
2019
, “
Thermal Effects of Ultrafast Laser Interaction With Polypropylene
,”
Opt. Exp.
,
27
(
4
), pp.
5764
5783
.10.1364/OE.27.005764
11.
Bauer
,
F.
,
Michalowski
,
A.
,
Kiedrowski
,
T.
, and
Nolte
,
S.
,
2015
, “
Heat Accumulation in Ultra-Short Pulsed Scanning Laser Ablation of Metals
,”
Opt. Exp.
,
23
(
2
), pp.
1035
1043
.10.1364/OE.23.001035
12.
Wang
,
H.
,
Shen
,
H.
, and
Yao
,
Z.
,
2019
, “
A Two-Step Model for Multiple Picosecond and Femtosecond Pulses Ablation of Fused Silica
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061004
.10.1115/1.4043308
13.
Mao
,
S.
,
Quéré
,
F.
,
Guizard
,
S.
,
Mao
,
X.
,
Russo
,
R.
,
Petite
,
G.
, and
Martin
,
P.
,
2004
, “
Dynamics of Femtosecond Laser Interactions With Dielectrics
,”
Appl. Phys. A
,
79
(
7
), pp.
1695
1709
.10.1007/s00339-004-2684-0
14.
Jiang
,
L.
, and
Tsai
,
H.-L.
,
2008
, “
A Plasma Model Combined With an Improved Two-Temperature Equation for Ultrafast Laser Ablation of Dielectrics
,”
J. Appl. Phys.
,
104
(
9
), p.
093101
.10.1063/1.3006129
15.
Chimier
,
B.
,
Utéza
,
O.
,
Sanner
,
N.
,
Sentis
,
M.
,
Itina
,
T.
,
Lassonde
,
P.
,
Légaré
,
F.
,
Vidal
,
F.
, and
Kieffer
,
J.
,
2011
, “
Damage and Ablation Thresholds of Fused-Silica in Femtosecond Regime
,”
Phys. Rev. B
,
84
(
9
), p.
094104
.10.1103/PhysRevB.84.094104
16.
Du
,
D.
,
Liu
,
X.
,
Korn
,
G.
,
Squier
,
J.
, and
Mourou
,
G.
,
1994
, “
Laser-Induced Breakdown by Impact Ionization in SiO2 With Pulse Widths From 7 ns to 150 fs
,”
Appl. Phys. Lett.
,
64
(
23
), pp.
3071
3073
.10.1063/1.111350
17.
Tien
,
A.-C.
,
Backus
,
S.
,
Kapteyn
,
H.
,
Murnane
,
M.
, and
Mourou
,
G.
,
1999
, “
Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration
,”
Phys. Rev. Lett.
,
82
(
19
), pp.
3883
3886
.10.1103/PhysRevLett.82.3883
18.
Sudrie
,
L.
,
Couairon
,
A.
,
Franco
,
M.
,
Lamouroux
,
B.
,
Prade
,
B.
,
Tzortzakis
,
S.
, and
Mysyrowicz
,
A.
,
2002
, “
Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica
,”
Phys. Rev. Lett.
,
89
(
18
), p.
186601
.10.1103/PhysRevLett.89.186601
19.
Balling
,
P.
, and
Schou
,
J.
,
2013
, “
Femtosecond-Laser Ablation Dynamics of Dielectrics: Basics and Applications for Thin Films
,”
Rep. Prog. Phys.
,
76
(
3
), p.
036502
.10.1088/0034-4885/76/3/036502
20.
Sun
,
M.
,
Eppelt
,
U.
,
Russ
,
S.
,
Hartmann
,
C.
,
Siebert
,
C.
,
Zhu
,
J.
, and
Schulz
,
W.
,
2013
, “
Numerical Analysis of Laser Ablation and Damage in Glass With Multiple Picosecond Laser Pulses
,”
Opt. Exp.
,
21
(
7
), pp.
7858
7867
.10.1364/OE.21.007858
21.
Lenzner
,
M.
,
Krüger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
C.
,
Mourou
,
G.
,
Kautek
,
W.
, and
Krausz
,
F.
,
1998
, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
,
80
(
18
), pp.
4076
4079
.10.1103/PhysRevLett.80.4076
22.
Stakgold
,
I.
, and
Holst
,
M. J.
,
2011
,
Green's Functions and Boundary Value Problems
,
Wiley
,
New York
.
23.
Finger
,
J.
,
Bornschlegel
,
B.
,
Reininghaus
,
M.
,
Dohrn
,
A.
,
Nießen
,
M.
,
Gillner
,
A.
, and
Poprawe
,
R.
,
2018
, “
Heat Input and Accumulation for Ultrashort Pulse Processing With High Average Power
,”
Adv. Opt. Technol.
,
7
(
3
), pp.
145
155
.10.1515/aot-2018-0008
24.
Galeener
,
F.
,
Barrio
,
R.
,
Martinez
,
E.
, and
Elliott
,
R.
,
1984
, “
Vibrational Decoupling of Rings in Amorphous Solids
,”
Phys. Rev. Lett.
,
53
(
25
), pp.
2429
2432
.10.1103/PhysRevLett.53.2429
25.
Walrafen
,
G. E.
, and
Krishnan
,
P.
,
1982
, “
Model Analysis of the Raman Spectrum From Fused Silica Optical Fibers
,”
Appl. Optics
,
21
(
3
), pp.
359
360
.10.1364/AO.21.000359
26.
Dussauze
,
M.
,
Rodriguez
,
V.
,
Lipovskii
,
A. A.
,
Petrov
,
M.
,
Smith
,
C.
,
Richardson
,
K.
,
Cardinal
,
T.
,
Fargin
,
E.
, and
Kamitsos
,
E. I.
,
2010
, “
How Does Thermal Poling Affect the Structure of Soda-Lime Glass?
,”
J. Phys. Chem. C
,
114
(
29
), pp.
12754
12759
.10.1021/jp1033905
27.
Burgin
,
J.
,
Guillon
,
C.
,
Langot
,
P.
,
Vallee
,
F.
,
Hehlen
,
B.
, and
Foret
,
M.
,
2008
, “
Vibrational Modes and Local Order in Permanently Densified Silica Glasses: Femtosecond and Raman Spectroscopy Study
,”
Phys. Rev. B
,
78
(
18
), p.
184203
.10.1103/PhysRevB.78.184203
28.
Galeener
,
F. L.
, and
Lucovsky
,
G.
,
1976
, “
Longitudinal Optical Vibrations in Glasses: GeO2 and SiO2
,”
Phys. Rev. Lett.
,
37
(
22
), pp.
1474
1478
.10.1103/PhysRevLett.37.1474
29.
Pasquarello
,
A.
, and
Car
,
R.
,
1998
, “
Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica
,”
Phys. Rev. Lett.
,
80
(
23
), pp.
5145
5147
.10.1103/PhysRevLett.80.5145
30.
Sun
,
M.
,
Eppelt
,
U.
,
Hartmann
,
C.
,
Schulz
,
W.
,
Zhu
,
J.
, and
Lin
,
Z.
,
2016
, “
Damage Morphology and Mechanism in Ablation Cutting of Thin Glass Sheets With Picosecond Pulsed Lasers
,”
Opt. Laser Technol.
,
80
, pp.
227
236
.10.1016/j.optlastec.2016.01.023
You do not currently have access to this content.