Abstract

The flow and heat transfer performance of Bingham fluid with thermally dependent viscosity across a heated circular tube have been numerically investigated (2408 ≤ ReB ≤ 5852, 9 ≤ Pr ≤ 23 and 10 ≤Bn ≤ 90). The modified bi-viscous Bingham model was used to solve the problem of discontinuous-viscous properties, and a function of temperature known as Arrhenius law was introduced. The results show that unyield regions include a circular shape, pyramid shape, and zones enclosing yield regions at high Reynolds number. Under constant wall temperature boundary, unyield region of temperature-dependent model at rear of circular tube is smaller due to a higher shear rate and lower average viscosity. On the surface of circular tube, local skin drag coefficient first increases and then decreases, and local Nusselt number decreases near rear stagnation point of circular tube illustrating unyield regions of Bingham fluid weaken heat transfer performance. Empirical correlations of average Nusselt number and drag coefficient were obtained based on effects of Reynolds number and Bingham number.

References

References
1.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology (Non-Newtonian Fluid Behavior)
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
, Chap.
1
.
2.
Mizushina
,
T.
, and
Usui
,
H.
,
1978
, “
Approximate Solution of the Boundary Layer Equations for the Flow of a Non-Newtonian Fluid Around a Cylinder
,”
Kagaku Kogaku Ronbun.
,
7
(
2
), pp.
83
92
.10.1252/kakoronbunshu.4.166
3.
Andersson
,
H. I.
,
1988
, “
The Nakayama-Koyama Approach to Laminar Forced Convection Heat Transfer to Power-Law Fluids
,”
Int. J. Heat Fluid Flow
,
9
(
3
), pp.
343
346
.10.1016/0142-727X(88)90048-3
4.
Shah
,
M. J.
,
Petersen
,
E. E.
, and
Acrivo
,
A.
,
1962
, “
Heat Transfer From a Cylinder to a Power-Law Non-Newtonian Fluid
,”
AIChE J.
,
8
(
4
), pp.
542
549
.10.1002/aic.690080425
5.
Kim
,
H. W.
,
Jeng
,
D. R.
, and
Dewitt
,
K. J.
,
1983
, “
Momentum and Heat Transfer in Power Law Fluids Over Two-Dimensional or Axisymmetrical Bodies
,”
Int. J. Heat Mass Transfer
,
26
(
2
), pp.
245
259
.10.1016/S0017-9310(83)80029-5
6.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2006
, “
Fluid Flow and Heat Transfer in Power-Law Fluids Across Circular Cylinders: Analytical Study
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
870
878
.10.1115/1.2241747
7.
Mizushina
,
T.
,
Usui
,
H.
, Ueno, K., and Kato, T.,
1978
, “
Experiments of Pseudoplastic Fluid Cross Flow Around a Circular Cylinder
,”
Kagaku Kogaku Ronbun.
,
4
(
2
), pp.
173
179
.10.1252/kakoronbunshu.4.173
8.
Kumar
,
S.
,
Mall
,
B. K.
, and
Upadhyay
,
S. N.
,
1980
, “
On the Mass Transfer in Non-Newtonian Fluids II. Transfer From Cylinders to Power Law Fluids
,”
Lett. Heat Mass Transfer
,
7
(
1
), pp.
55
64
.10.1016/0094-4548(80)90033-8
9.
Rao
,
B. K.
,
2000
, “
Heat Transfer to Non-Newtonian Flows Over a Cylinder in Cross Flow
,”
Int. J. Heat Fluid Flow
,
21
(
6
), pp.
693
700
.10.1016/S0142-727X(00)00063-1
10.
Soares
,
A. A.
,
Ferreira
,
J. M.
, and
Chhabra
,
R. P.
,
2005
, “
Flow and Forced Convection Heat Transfer in Crossflow of Non-Newtonian Fluids Over a Circular Cylinder
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5815
5827
.10.1021/ie0500669
11.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
Steady Forced Convection Heat Transfer From a Heated Circular Cylinder to Power-Law Fluids
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
977
990
.10.1016/j.ijheatmasstransfer.2006.08.008
12.
Sadeghi
,
H.
,
Izadpanah
,
E.
,
Babaie Rabiee
,
M.
, and
Hekmat
,
M. H.
,.
2017
, “
Effect of Cylinder Geometry on the Heat Transfer Enhancement of Power-Law Fluid Flow Inside a Channel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
5
), pp.
1695
1707
.10.1007/s40430-016-0695-3
13.
Pravesh
,
R.
,
Dhima
,
A.
, and
Bharti
,
R. P.
,
2019
, “
Non-Newtonian Power-Law Fluid's Thermal Characteristics Across Periodic Array of Circular Cylinders
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
2
), pp.
1
20
.10.1007/s40430-019-1584-3
14.
Mitsoulis
,
E.
,
2004
, “
On Creeping Drag Flow of a Viscoplastic Fluid Past a Circular Cylinder: Wall Effects
,”
Chem. Eng. Sci.
,
59
(
4
), pp.
789
800
.10.1016/j.ces.2003.09.041
15.
Dodji
,
L. T.
,
Magnin
,
A.
, and
Jay
,
P.
,
2008
, “
Very Slow Flow of Bingham Viscoplastic Fluid Around a Circular Cylinder
,”
J. Non-Newton. Fluid Mech.
,
154
(
1
), pp.
65
76
.10.1016/j.jnnfm.2008.02.006
16.
Mahmood
,
R.
,
Kousar
,
N.
,
Usman
,
K.
, Mehmood. A.,
2018
, “
Finite Element Simulations for Stationary Bingham Fluid Flow Past a Circular Cylinder
,”
J. Braz. Soc. Mech. Sci. Eng.
,
40
, p.
459
.10.1007/s40430-018-1383-2
17.
Kanaris, N., Kassinos, S. C., and Alexandrou, A. N.,
2015
, “
On the Transition to Turbulence of a Viscoplastic Fluid Past a Confined Cylinder: A Numerical Study
,”
Int. J. Heat Fluid Flow
,
55
, pp.
65
75
.10.1016/j.ijheatfluidflow.2015.05.008
18.
Yoshioka
,
N.
,
Adachi
,
K.
,
Nakamura
,
A.
, and
Ishimura
,
H.
,
1975
, “
An Experimental Investigation of Viscoplastic Flow Past a Circular Cylinder at High Reynolds Numbers
,”
Rheol. Acta
,
14
(
11
), pp.
993
1000
.10.1007/BF01516302
19.
Nirmalkar
,
N.
, and
Chhabra
,
R. P.
,
2014
, “
Momentum and Heat Transfer From a Heated Circular Cylinder in Bingham Plastic Fluids
,”
Int. J. Heat Mass Transfer
,
70
(
3
), pp.
564
577
.10.1016/j.ijheatmasstransfer.2013.11.034
20.
Papanastasiou
,
T. C.
,
1987
, “
Flow of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
404
.10.1122/1.549926
21.
Christiansen
,
E. B.
, and
Craig
,
S. E.
,
1962
, “
Heat Transfer to Pseudoplastic Fluids in Laminar Flow
,”
AIChE J.
,
8
(
2
), pp.
154
160
.10.1002/aic.690080205
22.
Christiansen
,
E. B.
,
Jensen
,
G. E.
, and
Tao
,
F. S.
,
1966
, “
Laminar Flow Heat Transfer
,”
AIChE J.
,
12
(
6
), pp.
1196
1201
.10.1002/aic.690120627
23.
Christiansen
,
E. B.
, and
Jensen
,
G. E.
,
1969
, “
Laminar Nonisothermal Flow of Fluids in Tubes of Circular Cross Section
,”
AIChE J.
,
15
(
4
), pp.
504
507
.10.1002/aic.690150408
24.
Forrest
,
G.
, and
Wilkinson
,
W. L.
,
1973
, “
Laminar Heat Transfer to Temperature-Dependent Bingham Fluids in Tubes
,”
Int. J. Heat Mass Transfer
,
16
(
12
), pp.
2377
2391
.10.1016/0017-9310(73)90022-7
25.
Kwant
,
P. B.
,
Zwaneveld
,
A.
, and
Dijkstra
,
F. C.
,
1973
, “
Non-Isothermal Laminar Pipe Flow—I. Theoretical
,”
Chem. Eng. Sci.
,
28
(
6
), pp.
1303
1316
.10.1016/0009-2509(73)80082-X
26.
Kwant
,
P. B.
,
Fierens
,
R. H. E.
, and
Lee
,
A. V. D.
,
1973
, “
Non-Isothermal Laminar Pipe Flow—II. Experimental
,”
Chem. Eng. Sci.
,
28
(
6
), pp.
1317
1330
.10.1016/0009-2509(73)80083-1
27.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London, UK
.
28.
Bercovier
,
M.
, and
Engelman
,
M.
,
1980
, “
A Finite-Element Method for Incompressible Non-Newtonian Flows
,”
J. Comput. Phys.
,
36
(
3
), pp.
313
326
.10.1016/0021-9991(80)90163-1
29.
O'Donovan
,
E. J.
, and
Tanner
,
R. I.
,
1984
, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newton. Fluid Mech.
,
15
(
1
), pp.
75
83
.10.1016/0377-0257(84)80029-4
30.
Burgos
,
G. R.
,
Alexandrou
,
A. N.
, and
Entov
,
V.
,
1999
, “
On the Determination of Yield Surfaces in Herschel-Bulkley Fluids
,”
J. Rheol.
,
43
(
3
), pp.
463
483
.10.1122/1.550992
31.
Adachi
,
K.
, and
Yoshioka
,
N.
,
1973
, “
On Creeping Flow of a Visco-Plastic Fluid Past a Circular Cylinder
,”
Chem. Eng. Sci.
,
28
(
1
), pp.
215
226
.10.1016/0009-2509(73)85102-4
32.
Tokpavi
,
D. L.
,
Jay
,
P.
,
Magnin
,
A.
, and
Jossic
,
L.
,
2009
, “
Experimental Study of the Very Slow Flow of a Yield Stress Fluid Around a Circular Cylinder
,”
J. Non-Newton. Fluid Mech.
,
164
(
1–3
), pp.
35
44
.10.1016/j.jnnfm.2009.08.002
You do not currently have access to this content.