Abstract

This paper reports our numerical studies on pool boiling heat transfer from a plane and with protruding surface using single component pseudo-potential phase change model of lattice Boltzmann method. The surface protrusions are assumed to be rectangular in shape with a given height and width. The surface protrusions are seen to promote nucleation of bubbles from the heated surface resulting in significantly higher heat transfer rates compared to the plane surface. Spatial and temporal averaged heat fluxes from all these protruding surfaces are found to be 3–4 times higher than that of a plane surface. The effects of the protrusion height, width, spacing, and associated geometrical parameters on surface heat flux have been investigated in order to arrive at an optimal design for maximum heat transfer.

References

References
1.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.10.1146/annurev.fluid.30.1.365
2.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061502
.10.1115/1.4023576
3.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
.10.1016/0017-9310(66)90138-4
4.
Chien
,
L. H.
, and
Webb
,
R. L.
,
1998
, “
A Nucleate Boiling Model for Structured Enhanced Surfaces
,”
Int. J. Heat Mass Transfer
,
41
(
14
), pp.
2183
2195
.10.1016/S0017-9310(97)00302-5
5.
Rainey
,
K. N.
, and
You
,
S. M.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
509
516
.10.1115/1.1288708
6.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
2002
, “
Boiling of Saturated FC-72 on Square Pin Fin Arrays
,”
Int. J. Therm. Sci.
,
41
(
7
), pp.
599
608
.10.1016/S1290-0729(02)01353-4
7.
Wei
,
J. J.
, and
Honda
,
H.
,
2003
, “
Effects of Fin Geometry on Boiling Heat Transfer From Silicon Chips With Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
,
46
(
21
), pp.
4059
4070
.10.1016/S0017-9310(03)00226-6
8.
Chen
,
S. W.
,
Hsieh
,
J. C.
,
Chou
,
C. T.
,
Lin
,
H. H.
,
Shen
,
S. C.
, and
Tsai
,
M. J.
,
2007
, “
Experimental Investigation and Visualization on Capillary and Boiling Limits of Micro-Grooves Made by Different Processes
,”
Sens. Actuators A: Phys.
,
139
(
1–2
), pp.
78
87
.10.1016/j.sna.2007.03.009
9.
Chan
,
M. A.
,
Yap
,
C. R.
, and
Ng
,
K. C.
,
2010
, “
Pool Boiling Heat Transfer of Water on Finned Surfaces at Near Vacuum Pressures
,”
ASME J. Heat Transfer
,
132
(
3
), p.
031501
.10.1115/1.4000054
10.
Kim
,
S. H.
,
Lee
,
G. C.
,
Kang
,
J. Y.
,
Moriyama
,
K.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2015
, “
Boiling Heat Transfer and Critical Heat Flux Evaluation of the Pool Boiling on Micro Structured Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1140
1147
.10.1016/j.ijheatmasstransfer.2015.07.120
11.
Shin
,
S.
, and
Juric
,
D.
,
2002
, “
Modelling of Three- Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking Without Connectivity
,”
J. Comput. Phys.
,
180
(
2
), pp.
427
470
.10.1006/jcph.2002.7086
12.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y. S.
,
2001
, “
A Front-Tracking Method for Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
13.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
14.
Gibou
,
F.
,
Chen
,
L.
,
Nguyen
,
D.
, and
Banerjee
,
S.
,
2007
, “
A Level Set Based Sharp Interphase Method for the Multiphase Incompressible Navier-Stokes Equations With Phase Change
,”
J. Comput. Phys.
,
222
(
2
), pp.
536
555
.10.1016/j.jcp.2006.07.035
15.
Tanguy
,
S.
,
Menard
,
T.
, and
Berlemont
,
A.
,
2007
, “
A Level Set Method for Vaporizing Two-Phase Flows
,”
J. Comput. Phys.
,
221
(
2
), pp.
837
853
.10.1016/j.jcp.2006.07.003
16.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
17.
van Sint Annaland
,
M.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
,
2005
, “
Numerical Simulation of Gas Bubble Behaviour Using Three-Dimensional Volume of Fluid Method
,”
Chem. Eng. Sci.
,
60
(
11
), pp.
2999
3011
.10.1016/j.ces.2005.01.031
18.
Yang
,
Z. L.
,
Dinh
,
T. N.
,
Nourgalie
,
R. R.
, and
Sehgal
,
B. R.
,
2000
, “
Numerical Investigation of Bubble Coalescence Characteristics Under Nucleate Boiling Condition by a lattice-Boltzmann Model
,”
Int. J. Therm. Sci.
,
39
(
1
), pp.
1
17
.10.1016/S1290-0729(00)00199-9
19.
Zhou
,
Z.
,
Shi
,
J.
,
Chen
,
H.-H.
,
Schafer
,
S. R.
, and
Chen
,
C.-L.
,
2014
, “
Two-Phase Flow Over Flooded Micro-Pillar Structures With Engineered Wettability Pattern
,”
Intern. J. Heat Transfer
,
71
, pp.
593
605
.10.1016/j.ijheatmasstransfer.2013.12.057
20.
Zhao
,
Z.
,
Zhang
,
J.
,
Jia
,
D.
,
Zhao
,
K.
,
Zhang
,
X.
, and
Jiang
,
P.
,
2017
, “
Thermal Performance Analysis of Pool Boiling on an Enhanced Surface Modified by the Combination of Microstructures and Wetting Properties
,”
Appl. Thermal Eng.
,
117
, pp.
417
426
.10.1016/j.applthermaleng.2017.02.014
21.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
Numerical Investigation of Droplet Motion and Coalescence by an Improved Lattice Boltzmann Model for Phase Transitions and Multiphase Flows
,”
Comput. Fluids
,
53
, pp.
93
104
.10.1016/j.compfluid.2011.09.013
22.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice Gas Automata for Navier-Stokes Equation
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.10.1103/PhysRevLett.56.1505
23.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
24.
Gunstensen
,
A. K.
,
Rothman
,
D. H.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1991
, “
Lattice Boltzmann Model of Immiscible Fluids
,”
Phys. Rev. A
,
43
(
8
), pp.
4320
4327
.10.1103/PhysRevA.43.4320
25.
Swift
,
M. R.
,
Orlandini
,
E.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
,
1996
, “
Lattice Boltzmann Simulations of Liquid-Gas and Binary Fluid Systems
,”
Phys. Rev. E
,
54
(
5
), pp.
5041
5052
.10.1103/PhysRevE.54.5041
26.
He
,
X.
,
Chen
,
S.
, and
Zhang
,
R.
,
1999
, “
A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability
,”
J. Comput. Phys.
,
152
(
2
), pp.
642
663
.10.1006/jcph.1999.6257
27.
Rothman
,
D. H.
, and
Keller
,
J. M.
,
1988
, “
Immiscible Cellular-Automaton Fluids
,”
J. Stat. Phys.
,
52
(
3–4
), pp.
1119
1127
.10.1007/BF01019743
28.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
29.
Orlandini
,
E.
,
Swift
,
M. R.
, and
Yeomans
,
J. M.
,
1995
, “
A Lattice Boltzmann Model of Binary-Fluid Mixtures
,”
Europhys. Lett.
,
32
(
6
), pp.
463
468
.10.1209/0295-5075/32/6/001
30.
Sbragaglia
,
M.
,
Benzi
,
R.
,
Biferale
,
L.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows
,”
Phys. Rev. Lett.
,
97
(
20
), p.
204503
.10.1103/PhysRevLett.97.204503
31.
Markas
,
A.
, and
Hazi
,
G.
,
2012
, “
Numerical Simulation of the Detachment of Bubbles From a Rough Surface at Microscale Level
,”
Numer. Eng. Des.
,
248
, pp.
263
269
.10.1016/j.nucengdes.2012.03.040
32.
Gong
,
S.
, and
Cheng
,
P.
,
2016
, “
Two-Dimensional Mesoscale Simulations of Saturated Pool Boiling From Rough Surface. Part ii: Bubble Interactions Above Multi-Cavities
,”
Int. J. Heat Mass Transfer
,
100
, pp.
938
948
.10.1016/j.ijheatmasstransfer.2016.04.082
33.
Zhang
,
C.
,
Hong
,
F.
, and
Cheng
,
P.
,
2015
, “
Simulation of Liquid Thin Film Evaporation and Boiling on a Heated Hydrophilic Microstructured Surface by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
86
, pp.
629
638
.10.1016/j.ijheatmasstransfer.2015.03.029
34.
Li
,
Q.
,
Yu
,
Y.
,
Zhou
,
P.
, and
Yan
,
H. J.
,
2018
, “
Enhancement of Boiling Heat Transfer Using Hydrophilic-Hydrophobic Mixed Surfaces
,”
Appl. Therm. Eng.
,
132
, pp.
490
499
.10.1016/j.applthermaleng.2017.12.105
35.
Mohamad
,
A. A.
, 2019, “Lattice Boltzmann Method—
Fundamentals and Engineering Applications With Computer Codes
,” Springer Nature, London.
36.
Gong
,
S.
,
Cheng
,
P.
, and
Quan
,
S.
,
2010
, “
Lattice Boltzmann Simulation of Droplet Formation in Microchannels Under an Electric Field
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5863
5870
.10.1016/j.ijheatmasstransfer.2010.07.057
37.
Zhang
,
R.
, and
Chen
,
H.
,
2003
, “
Lattice Boltzmann Method for Simulations of Liquid-Vapor Thermal Flows
,”
Phys. Rev. E
,
67
(
6
), p.
066711
.10.1103/PhysRevE.67.066711
38.
Kupershtokh
,
A. L.
, and
Medvedev
,
D. A.
,
2006
, “
Lattice Boltzmann Equation in Electrohydrodynamic Problems
,”
J. Electrostat.
,
64
(
7–9
), pp.
581
585
.10.1016/j.elstat.2005.10.012
39.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids
,
18
(
4
), p.
042101
.10.1063/1.2187070
40.
Sukop
,
M. C.
, and
Or
,
D.
,
2004
, “
Lattice Boltzmann Method for Modelling Liquid-Vapor Interface Configurations in Porous Media
,”
Water Resour. Res.
,
40
(
1
), p.
01509
.10.1029/2003WR002333
41.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2002
, “
Displacement of a Two-Dimensional Immiscible Droplet Channel
,”
Phys. Fluids
,
14
(
9
), pp.
3203
3214
.10.1063/1.1499125
42.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
A Lattice Boltzmann Method for Simulation of Liquid-Vapour Phase- Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4923
4927
.10.1016/j.ijheatmasstransfer.2012.04.037
43.
Li
,
L.
,
Chen
,
C.
,
Mei
,
R.
, and
Klausner
,
J. F.
,
2014
, “
Conjugate Heat and Mass Transfer in Lattice Boltzmann Method
,”
Phys. Rev. E
,
89
(
4
), p.
04330
.10.1103/PhysRevE.89.043308
44.
Gong
,
S.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Periodic Bubble Nucleation, Growth and Departure From a Heated Surface in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
64
, pp.
122
132
.10.1016/j.ijheatmasstransfer.2013.03.058
45.
Fritz
,
W.
,
1935
, “
Berechnung Des Maximal volumes Von Dampfblasen
,”
Phys. Z.
,
36
, pp.
379
384
.
46.
Peebles
,
F. N.
, and
Garber
,
H. J.
,
1953
, “
Studies on the Motion of Gas Bubbles in Liquids
,”
Chem. Eng. Prog.
,
49
(
2
), pp.
88
97
.
You do not currently have access to this content.