Abstract

This study establishes forward closed-form and inverse analyses of wet fins of various profiles involving all modes of heat transfer. Existing limitations in the literature are addressed here by choosing the appropriate nonlinear variation of thermal conductivity and radiation effects. The error between linear and nonlinear methodologies is found to be within 60%. Furthermore, the maximum error between the closed-form solution based on the differential transformation method (DTM), and the numerical solution is observed as 0.5%. After necessary validations, optimization of various fin profiles is carried out by the maximization of the net fin heat transmission rate under a defined fin volume and thermogeometrical constraints. For the optimum criterion, the suitability of the artificial bee colony (ABC)-based metaheuristic technique is established. The identification of thermogeometrical parameters is realized by analyzing combinations obtained from 100 runs of ABC and the decision-making criterion is adopted on the basis of the maximum thermal performance. Among the studied profiles, concave parabolic geometry yields the maximum heat transport rate, which is followed by triangular, convex, and rectangular geometries for the same fin volume. The present combination of DTM and ABC techniques is proposed to be useful in practical applications toward design and the selection of evaporator fins for air-conditioning and refrigeration appliances operating under wet conditions in a more accurate and optimized manner.

References

References
1.
Hong
,
K.
, and
Webb
,
R. L.
,
1999
, “
Performance of Dehumidifying Heat Exchangers With and Without Wetting Coatings
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
1018
1026
.10.1115/1.2826052
2.
Lin
,
Y. T.
,
Hsu
,
K. C.
,
Chang
,
Y. J.
, and
Wang
,
C. C.
,
2001
, “
Performance of Rectangular Fin in Wet Conditions: Visualization and Wet Fin Efficiency
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
827
836
.10.1115/1.1391275
3.
Kundu
,
B.
,
2002
, “
An Analytical Study of the Effect of Dehumidification of Air on the Performance and Optimization of Straight Tapered Fins
,”
Int. Commun. Heat Mass Transfer
,
29
(
2
), pp.
269
278
.10.1016/S0735-1933(02)00317-2
4.
Kundu
,
B.
, and
Das
,
P. K.
,
2004
, “
Performance and Optimization Analysis for Fins of Straight Taper With Simultaneous Heat and Mass Transfer
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
862
868
.10.1115/1.1798911
5.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2007
, “
Efficiency and Optimization of an Annular Fin With Combined Heat and Mass Transfer - An Analytical Solution
,”
Int. J. Refrig.
,
30
(
5
), pp.
751
757
.10.1016/j.ijrefrig.2006.12.008
6.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2008
, “
Efficiency and Optimization of Straight Fins With Combined Heat and Mass Transfer - An Analytical Solution
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2279
2288
.10.1016/j.applthermaleng.2008.01.003
7.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2008
, “
Efficiency and Optimization of a Straight Rectangular Fin With Combined Heat and Mass Transfer
,”
Heat Transfer Eng.
,
29
(
12
), pp.
1018
1026
.10.1080/01457630802243030
8.
Sharqawy
,
M. H.
, and
Zubair
,
S. M.
,
2009
, “
Performance and Optimum Geometry of Spines With Simultaneous Heat and Mass Transfer
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2130
2138
.10.1016/j.ijthermalsci.2009.03.009
9.
Liu
,
L.
, and
Jacobi
,
A. M.
,
2009
, “
Air-Side Surface Wettability Effects on the Performance of Slit-Fin-and-Tube Heat Exchangers Operating Under Wet-Surface Conditions
,”
ASME J. Heat Transfer
,
131
(
5
), p.
051802-1-9
.10.1115/1.2994722
10.
Zhao
,
L. X.
,
Yang
,
L.
, and
Zhang
,
C. L.
,
2010
, “
Network Modeling of Fin-and-Tube Evaporator Performance Under Dry and Wet Conditions
,”
ASME J. Heat Transfer
,
132
(
7
), p.
074502-1-4
.10.1115/1.4000950
11.
Hatami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Investigation of Refrigeration Efficiency for Fully Wet Circular Porous Fins With Variable Sections by Combined Heat and Mass Transfer Analysis
,”
Int. J. Refrig.
,
40
(
4
), pp.
140
151
.10.1016/j.ijrefrig.2013.11.002
12.
Turkyilmazoglu
,
M.
,
2014
, “
Efficiency of Heat and Mass Transfer in Fully Wet Porous Fins: Exponential Fins Versus Straight Fins
,”
Int. J. Refrig.
,
46
(
10
), pp.
158
164
.10.1016/j.ijrefrig.2014.04.011
13.
Darvishi
,
M. T.
,
Gorla
,
R. S. R.
,
Khani
,
F.
, and
Gireesha
,
B. J.
,
2016
, “
Thermal Analysis of Natural Convection and Radiation in a Fully Wet Porous Fin
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
8
), pp.
2419
2431
.10.1108/HFF-06-2015-0230
14.
Rao
,
Y.
,
2018
, “
Jet Impingement Heat Transfer in Narrow Channels With Different Pin Fin Configurations on Target Surfaces
,”
ASME J. Heat Transfer
,
140
(
7
), p.
072201-1-10
.10.1115/1.4039015
15.
Kundu
,
B.
, and
Lee
,
K. S.
,
2012
, “
Analytic Solution for Heat Transfer of Wet Fins on Account of All Nonlinearity Effects
,”
Energy
,
41
(
1
), pp.
354
367
.10.1016/j.energy.2012.03.004
16.
Kundu
,
B.
, and
Lee
,
K. S.
,
2016
, “
Effects of Psychrometric Properties on Fin Performances of Minimum Envelope Shape of Wet Fins
,”
Energy Convers. Manage.
,
110
, pp.
481
493
.10.1016/j.enconman.2015.09.054
17.
Hazarika
,
S. A.
,
Bhanja
,
D.
,
Nath
,
S.
, and
Kundu
,
B.
,
2015
, “
Analytical Solution to Predict Performance and Optimum Design Parameters of a Constructal T-Shaped Fin With Simultaneous Heat and Mass Transfer
,”
Energy
,
84
(
5
), pp.
303
316
.10.1016/j.energy.2015.02.102
18.
Das
,
R.
, and
Kundu
,
B.
,
2019
, “
Forward and Inverse Nonlinear Heat Transfer Analysis for Optimization of a Constructal T-Shape Fin Under Dry and Wet Conditions
,”
Int. J. Heat Mass Transfer
,
137
(
7
), pp.
461
475
.10.1016/j.ijheatmasstransfer.2019.03.097
19.
Aziz
,
A.
, and
Rahman
,
M. M.
,
2009
, “
Thermal Performance of a Functionally Graded Radial Fin
,”
Int. J. Thermophys.
,
30
(
5
), pp.
1637
1648
.10.1007/s10765-009-0627-x
20.
Moitsheki
,
R. J.
,
Hayat
,
T.
, and
Malik
,
M. Y.
,
2010
, “
Some Exact Solutions of the Fin Problem With a Power Law Temperature-Dependent Thermal Conductivity
,”
Nonlinear Anal.: Real World Appl.
,
11
(
5
), pp.
3287
3294
.10.1016/j.nonrwa.2009.11.021
21.
Luciani
,
S.
,
Brutin
,
D.
,
Le Niliot
,
C.
,
Rahli
,
O.
, and
Tadrist
,
L.
,
2008
, “
Flow Boiling in Minichannels Under Normal, Hyper-, and Microgravity: Local Heat Transfer Analysis Using Inverse Methods
,”
ASME J. Heat Transfer
,
130
(
10
), p.
101502
.10.1115/1.2953306
22.
Powell
,
M. J. D.
,
1986
, “
Convergence Properties of Algorithms for Nonlinear Optimization
,”
SIAM Rev.
,
28
(
4
), pp.
487
500
.10.1137/1028154
23.
Sampaio
,
P. R.
, and
Toint
,
P. L.
,
2015
, “
A Derivative-Free Trust-Funnel Method for Equality-Constrained Nonlinear Optimization
,”
Comput. Optim. Appl.
,
61
(
1
), pp.
25
49
.10.1007/s10589-014-9715-3
24.
Karaboga
,
D.
, and
Akay
,
B.
,
2009
, “
A Comparative Study of Artificial Bee Colony Algorithm
,”
Appl. Math. Comput.
,
214
(
1
), pp.
108
132
.10.1016/j.amc.2009.03.090
25.
Kraus
,
A. D.
,
Aziz
,
A.
, and
Welty
,
J.
,
2001
,
Extended Surface Heat Transfer
,
Wiley
,
New York
.
26.
Chilton
,
T. H.
, and
Colburn
,
A. P.
,
1934
, “
Mass Transfer (Absorption) Coefficients Prediction From Data on Heat Transfer and Fluid Friction
,”
Ind. Eng. Chem.
,
26
(
11
), pp.
1183
1187
.10.1021/ie50299a012
27.
Kundu
,
B.
,
2008
, “
Optimization of Fins Under Wet Conditions Using Variational Principle
,”
J. Thermophys. Heat Transfer
,
22
(
4
), pp.
604
616
.10.2514/1.33149
28.
Abdel-Halim Hassan
,
I. H.
,
2008
, “
Application to Differential Transformation Method for Solving Systems of Differential Equations
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2552
2559
.10.1016/j.apm.2007.09.025
29.
Das
,
R.
,
Akay
,
B.
,
Singla
,
R. K.
, and
Singh
,
K.
,
2017
, “
Application of Artificial Bee Colony Algorithm for Inverse Modelling of a Solar Collector
,”
Inverse Probl. Sci. Eng.
,
25
(
6
), pp.
887
908
.10.1080/17415977.2016.1209748
You do not currently have access to this content.