Abstract

In this work, we study the heat transfer performance and particle dynamics of a high mass-loaded, compressible, particle-laden flow in a horizontally oriented pipe using an Eulerian–Eulerian (two-fluid) computational model. Previous experimental work by our group provides the basis for the study. Specifically, a 17 bar coflow of nitrogen gas and copper powder are modeled with inlet Reynolds numbers of 3 × 104, 4.5 × 104, and 6 × 104 and mass loadings of 0, 0.5, and 1.0. Eight binned particle sizes were modeled to represent the known powder properties. Significant settling of all particle groups is observed leading to asymmetric temperature distributions. Wall and core flow temperature distributions are observed to agree well with measurements. In high Reynolds number cases, the predictions of the multiphase computational model were satisfactorily aligned with the experimental results. Low Reynolds number model predictions were not as consistent with the experimental measurements.

References

1.
Masters
,
S. R.
,
2018
, “
Effect of Particle Concentration and Reynolds Number on Heat Transfer in Particle-Laden Flows
,” M.S. thesis, Department of Mechanical Engineering,
The Pennsylvania State University
, University Park, PA.
2.
Farbar
,
L.
, and
Morley
,
M.
,
1957
, “
Heat Transfer to Flowing Gas-Solids Mixtures in a Circular Tube
,”
Ind. Eng. Chem.
,
49
(
7
), pp.
1143
1150
.10.1021/ie50571a038
3.
Wilkinson
,
G. T.
,
1967
, “
Heat Transfer to Gas-Solids Suspensions
,” Ph.D. thesis,
School of Chemical Engineering, University of New South Wales
, Sydney, Australia.
4.
Boothroyd
,
R. G.
, and
Haque
,
H.
,
1970
, “
Fully Developed Heat Transfer to a Gaseous Suspension of Particles Flowing Turbulently in Ducts of Different Size
,”
J. Mech. Eng. Sci.
,
12
(
3
), pp.
191
200
.10.1243/JMES_JOUR_1970_012_034_02
5.
Depew
,
C. A.
, and
Farbar
,
L.
,
1963
, “
Heat Transfer to Pneumatically Conveyed Glass Particles of Fixed Size
,”
ASME J. Heat Transfer-Trans. ASME
,
85
(
2
), pp.
164
171
.10.1115/1.3686042
6.
Farbar
,
L.
, and
Depew
,
C. A.
,
1963
, “
Heat Transfer Effects to Gas-Solids Mixtures Using Solid Spherical Particles of Uniform Size
,”
Ind. Eng. Chem. Fundam.
,
2
(
2
), pp.
130
135
.10.1021/i160006a008
7.
Matsumoto
,
S.
,
Ohnishi
,
S.
, and
Maeda
,
S.
,
1978
, “
Heat Transfer to Vertical Gas-Solid Suspension Flows
,”
J. Chem. Eng. Jpn.
,
11
(
2
), pp.
89
95
.10.1252/jcej.11.89
8.
Wahi
,
M. K.
,
1977
, “
Heat Transfer to Flowing Gas-Solid Mixtures
,”
ASME J. Heat Transfer-Trans. ASME
,
99
(
1
), pp.
145
148
.10.1115/1.3450641
9.
Depew
,
C. A.
, and
Kramer
,
T. J.
,
1973
, “
Heat Transfer to Flowing Gas-Solid Mixtures
,”
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Advances in Heat Transfer
, Vol.
9
,
Academic Press, New York, pp.
113
180
.
10.
Kane
,
R. S.
, and
Pfeffer
,
R.
,
1985
, “
Heat Transfer in Gas-Solids Drag-Reducing Flow
,”
ASME J. Heat Transfer-Trans. ASME
,
107
(
3
), pp.
570
574
.10.1115/1.3247462
11.
Bejan
,
A.
,
2004
,
Convection Heat Transfer
, 3rd ed.,
Wiley
, New York.
12.
Avila
,
R.
, and
Cervantes
,
J.
,
1995
, “
Analysis of the Heat Transfer Coefficient in a Turbulent Particle Pipe Flow
,”
Int. J. Heat Mass Transfer
,
38
(
11
), pp.
1923
1932
.10.1016/0017-9310(94)00321-L
13.
Danziger
,
W. J.
,
1963
, “
Heat Transfer to Fluidized Gas-Solids Mixtures in Vertical Transport
,”
Ind. Eng. Chem. Process Des. Dev.
,
2
(
4
), pp.
269
276
.10.1021/i260008a00
14.
Depew
,
C. A.
,
1960
, “
Heat Transfer to Flowing Gas-Solids Mixtures in a Vertical Circular Duct
,” Ph.D. thesis,
Lawrence Radiation Laboratory, University of California
,
Berkeley, CA
.
15.
Kim
,
J. M.
, and
Seader
,
J. D.
,
1983
, “
Heat Transfer to Gas-Solids Suspensions Flowing Cocurrently Downward in a Circular Tube
,”
AiCHE J.
,
29
(
2
), pp.
306
312
.10.1002/aic.690290219
16.
Shah
,
M. M.
,
2020
, “
A Correlation for Heat Transfer to Gas–Solid Suspensions Flowing in Pipes
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p. 021009. 10.1115/1.4043743
17.
Soo
,
H. K.
,
Jin
,
S. H.
, and
Kyoon
,
C. M.
,
1991
, “
Analysis of Heat Transfer in a Pipe Carrying Two-Phase Gas-Particle Suspension
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
69
78
.
18.
Burns
,
A. D.
,
Frank
,
T.
,
Hamill
,
I.
, and
Shi
,
J. M.
,
2004
, “
The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows
,”
Presented at the Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 4, Paper No.
392
.https://www.researchgate.net/publication/261761053_The_Favre_Averaged_Drag_Model_for_Turbulent_Dispersion_in_Eulerian_Multi-Phase_Flows
19.
Besnard
,
D. C.
, and
Harlow
,
F. H.
,
1988
, “
Turbulence in Multiphase Flow
,”
Int. J. Multiphase Flow
,
14
(
6
), pp.
679
699
.10.1016/0301-9322(88)90068-7
20.
Lopez de Bertodano
,
M. A.
,
1998
, “
Two Fluid Model for Two-Phase Turbulent Jets
,”
Nuclear Eng. Des.
,
179
(
1
), pp.
65
74
.10.1016/S0029-5493(97)00244-6
21.
Kunz
,
R. F.
,
Yu
,
W. S.
,
Antal
,
S. P.
, and
Ettorre
,
S. M.
,
2001
, “
An Unstructured Two-Fluid Method Based on the Coupled Phasic Exchange Algorithm
,”
AIAA
Paper No. 2001-2672. 10.2514/6.2001-2672
22.
Zhang
,
Z.
, and
Prosperetti
,
A.
,
2005
, “
A Second-Order Method for Three-Dimensional Particle Simulation
,”
J. Comput. Phys.
,
210
(
1
), pp.
292
324
.10.1016/j.jcp.2005.04.009
23.
Theofanous
,
T. G.
, and
Chang
,
C. H.
,
2017
, “
The Dynamics of Dense Particle Clouds Subjected to Shock Waves. Part 2. Modeling/Numerical Issues and the Way Forward
,”
Int. J. Multiphase Flow
,
89
, pp.
177
206
.10.1016/j.ijmultiphaseflow.2016.10.004
24.
Theofanous
,
T. G.
,
Mitkin
,
V.
, and
Chang
,
C. H.
,
2018
, “
Shock Dispersal of Dilute Particle Clouds
,”
J. Fluid Mech.
,
841
, pp.
732
745
.10.1017/jfm.2018.110
25.
Zwick
,
D.
, and
Balachandar
,
S.
,
2019
, “
Dynamics of Rapidly Depressurized Multiphase Shock Tubes
,”
J. Fluid Mech.
,
880
, pp.
441
477
.10.1017/jfm.2019.710
26.
Willen
,
D. P.
, and
Prosperetti
,
A.
,
2019
, “
Resolved Simulations of Sedimenting Suspensions of Spheres
,”
Phys. Rev. Fluids
,
4
(
1
), p.
014304
.10.1103/PhysRevFluids.4.014304
27.
Koneru
,
R. B.
,
Rollin
,
B.
,
Durant
,
B.
,
Ouellet
,
F.
, and
Balachandar
,
S.
,
2020
, “
A Numerical Study of Particle Jetting in a Dense Particle Bed Driven by an Air-Blast
,”
Phys. Fluids
,
32
(
9
), p.
093301
.10.1063/5.0015190
28.
Liu
,
C.
,
Tang
,
S.
,
Shen
,
L.
, and
Dong
,
Y.
,
2017
, “
Characteristics of Turbulence Transport for Momentum and Heat in Particle-Laden Turbulent Vertical Channel Flows
,”
Acta Mech. Sin. J.
,
33
(
5
), pp.
833
845
.10.1007/s10409-017-0646-y
29.
Tien
,
C. L.
,
1961
, “
Heat Transfer by a Turbulently Flowing Fluid-Solids Mixture in a Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
83
(
2
), pp.
183
188
.10.1115/1.3680514
30.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2011
, “
Time Behavior of Heat Fluxes in Thermally Coupled Turbulent Dispersed Particle Flows
,”
Acta Mech.
,
218
(
3–4
), pp.
367
373
.10.1007/s00707-010-0420-8
31.
Coakley
,
T.
,
1983
, “
Turbulence Modeling Methods for the Compressible Navier-Stokes Equations
,” 16th Fluid and Plasmadynamics Conference, in American Institute of Aeronautics and Astronautics,
AIAA
Paper No. 83-169310.2514/6.1983-1693.
32.
Suga
,
K.
,
Craft
,
T. J.
, and
Iacovides
,
H.
,
2006
, “
An Analytical Wall-Function for Turbulent Flows and Heat Transfer Over Rough Walls
,”
Int. J. Heat Fluid Flow
,
27
(
5
), pp.
852
866
.10.1016/j.ijheatfluidflow.2006.03.011
33.
Schiller
,
L.
, and
Naumann
,
A.
,
1935
, “
A Drag Coefficient Correlation
,”
Z. Ver. Dtsch. Ing.
,
77
, pp.
318
320
.
34.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops
,”
Chem. Eng. Prog.
,
48
, pp.
141
146
.
35.
NIST
,
NIST Chemistry WebBook, SRD 69
,
I. P. f.
Nitrogen
, ed.,
National Institute of Standards and Technology
, Gaithersburg, MD.
36.
Engineering ToolBox
,
2018
,
Nitrogen- Prandtl Number
, Vol.
2020
,
Engineering ToolBox
.
37.
Atlantic Equipment Engineers, 2021, “
Copper Metal Flake—CU-102
,”
Atlantic Equipment Engineers
, accessed Oct. 6,
2021
, https://micronmetals.com/products/copper-metal-flake-cu-102
You do not currently have access to this content.