Abstract

Micropipette-based thermocouples provide the advantage of a high tip diameter-to-length aspect ratio allowing the maintenance of a reference temperature crucial for accurate thermal sensing in microdomains. The research efforts in this field strive to achieve high thermoelectric power (voltage change per unit temperature change) while minimizing the sensing area, a pair of tasks that is by nature contradictory and thus, challenging. Herein, the design and fabrication of a carbon-based micropipette thermal sensor are described. A novel manufacturing method and set of materials are used to overcome the reduction in thermoelectric performance associated with small sensor sizes. A glass micropipette is utilized as a template in a chemical vapor deposition process to form a carbon layer in the lumen of the pipette. This carbon micropipette then serves as a scaffold on which gold and nickel are deposited, enabling the device to function as a thermocouple. This low-cost fabrication process results in a thermocouple with a sub-500 nm tip. The response of the thermocouple was characterized and demonstrated good repeatability in a temperature range of 0 to 60 °C. The unique material selection provided a thermoelectric power of 14.9 μV·K−1, a significant improvement (68%) relative to other micropipette-based thermocouples.

References

1.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME J. Heat Transfer-Trans. ASME
,
124
(
2
), pp.
223
241
.10.1115/1.1454111
2.
Dahan
,
N.
,
Niv
,
A.
,
Biener
,
G.
,
Gorodetski
,
Y.
,
Kleiner
,
V.
, and
Hasman
,
E.
,
2008
, “
Extraordinary Coherent Thermal Emission From Sic Due to Coupled Resonant Cavities
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
11
), p.
112401
.10.1115/1.2955475
3.
Fish
,
G.
,
Bouevitch
,
O.
,
Kokotov
,
S.
,
Lieberman
,
K.
,
Palanker
,
D.
,
Turovets
,
I.
, and
Lewis
,
A.
,
1995
, “
Ultrafast Response Micropipette‐Based Submicrometer Thermocouple
,”
Rev. Sci. Instrum.
,
66
(
5
), pp.
3300
3306
.10.1063/1.1145498
4.
Lee
,
J.-N.
, and
Chen
,
C.-C.
,
2014
, “
A Monochrome Light-Emitting Diode Moiré Deflectometry Technique for Two-Dimensional Temperature Measurement
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
10
), p.
101601
.10.1115/1.4027978
5.
Srinivas
,
T.
,
Timans
,
P.
,
Butcher
,
R.
, and
Ahmed
,
H.
,
1993
, “
Thermal and Infrared Performance of a Free‐Standing Microthermocouple
,”
Rev. Sci. Instrum.
,
64
(
12
), pp.
3602
3611
.10.1063/1.1144236
6.
Hill
,
D.
,
Williams
,
L.
,
Mah
,
G.
, and
Bradley
,
W.
,
1977
, “
The Effect of Physical Vapor Deposition Parameters on the Thermoelectric Power of Thin Film Molybdenum-Nickel Junctions
,”
Thin Solid Films
,
40
, pp.
263
270
.10.1016/0040-6090(77)90127-4
7.
Brandner
,
J. J.
,
2019
, “
In-Situ Measurements in Microscale Gas Flows—Conventional Sensors or Something Else?
,”
Micromachines
,
10
(
5
), p.
292
.10.3390/mi10050292
8.
Shrestha
,
R.
,
Choi
,
T.-Y.
,
Chang
,
W.
, and
Kim
,
D.
,
2011
, “
A High-Precision Micropipette Sensor for Cellular-Level Real-Time Thermal Characterization
,”
Sensors
,
11
(
9
), pp.
8826
8835
.10.3390/s110908826
9.
Zhang
,
H.
,
Xiao
,
X.
,
Su
,
T.
,
Gu
,
X.
,
Jin
,
T.
,
Du
,
L.
, and
Tang
,
J.
,
2014
, “
A Novel Thermocouple Microelectrode for Applications in SECM and Variable Temperature Electrochemistry
,”
Electrochem. Commun.
,
47
, pp.
71
74
.10.1016/j.elecom.2014.06.027
10.
Kakuta
,
N.
,
Suzuki
,
T.
,
Saito
,
T.
,
Nishimura
,
H.
, and
Mabuchi
,
K.
,
2002
, “
Measurement of Microscale Bio-Thermal Responses by Means of a Micro-Thermocouple Probe
,”
Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Istanbul, Turkey
, Oct. 25–38, pp.
3114
3117
.10.1109/IEMBS.2001.1017461
11.
Macia
,
E.
,
2015
,
Thermoelectric Materials: Advances and Applications
,
CRC Press
,
Boca Raton, FL
.
12.
Scheibel
,
O. V.
, and
Schrlau
,
M. G.
,
2020
, “
A Self‐Contained Two‐Electrode Nanosensor for Electrochemical Analysis in Aqueous Microenvironments
,”
Electroanalysis
,
32
(
9
), pp.
1914
1921
.10.1002/elan.201900672
13.
Schrlau
,
M. G.
,
Falls
,
E. M.
,
Ziober
,
B. L.
, and
Bau
,
H. H.
,
2008
, “
Carbon Nanopipettes for Cell Probes and Intracellular Injection
,”
Nanotechnology
,
19
(
1
), p.
015101
.10.1088/0957-4484/19/01/015101
14.
Shapira
,
E.
,
Marchak
,
D.
,
Tsukernik
,
A.
, and
Selzer
,
Y.
,
2008
, “
Segmented Metal Nanowires as Nanoscale Thermocouples
,”
Nanotechnology
,
19
(
12
), p.
125501
.10.1088/0957-4484/19/12/125501
15.
Allen
,
P. B.
,
Rodriguez
,
I.
,
Kuyper
,
C. L.
,
Lorenz
,
R. M.
,
Spicar-Mihalic
,
P.
,
Kuo
,
J. S.
, and
Chiu
,
D. T.
,
2003
, “
Selective Electroless and Electrolytic Deposition of Metal for Applications in Microfluidics: Fabrication of a Microthermocouple
,”
Anal. Chem.
,
75
(
7
), pp.
1578
1583
.10.1021/ac020498i
16.
Rowe
,
D. M.
,
2018
,
Thermoelectrics Handbook: Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
17.
Chen
,
M.
,
Lu
,
S.-S.
, and
Liao
,
B.
,
2005
, “
On the Figure of Merit of Thermoelectric Generators
,”
ASME J. Energy Resource Technol.
,
127
(
1
), pp.
37
41
.10.1115/1.1811120
You do not currently have access to this content.