Abstract

Optimization of thermal performance processes using genetic algorithm (GA) combined with some commercial software or other soft computing methods like artificial neural networks are common in many heat transfer applications with the exception of battery thermal management. In this article, a novel and innovative approach for single-objective optimization using GA combined with in-house developed finite volume method (FVM)-based code is investigated. Three important thermal and fluid flow performance parameters of modern electric vehicle Lithium–ion battery cells, namely, average Nusselt number (Nuavg), friction coefficient (Cf,avg), and maximum temperature (T¯max) are optimized. The operating parameters considered for optimization include heat generation term (S¯q), Reynolds number (Re), conduction-convection parameter (ζcc), aspect ratio (Ar), and spacing between the cells (W¯ff) varying in some selected range. Optimization in case of internal flow between the battery cells and external flow over the battery cell is performed. Computational time taken by the combined GA and FVM code for 5, 10, 15, and 20 iterations in case of internal and external flow is also presented. From the complete optimization analysis, it is found that for higher charging/discharging rates at which the heat generation is very high, T¯max can be kept within the safe limit, Nuavg to maximum and Cf,avg to a minimum with a slight compromise in pumping power requirement to circulate the coolant in internal flow. For external flow analysis, Re and ζcc in a selected medium range will provide optimized thermal and fluid flow situations.

References

1.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2016
, “
Temperature Uniformity Improvement of an Air-Cooled High-Power Lithium–Ion Battery Using Metal and Nonmetal Foams
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
11
), p. 114502.10.1115/1.4033811
2.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2020
, “
Thermal Management of Li–Ion Batteries by Embedding Microgrooves Inside the Electrodes: A Thermal Lattice Boltzmann Method Study
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
5
), p. 052902.10.1115/1.4046536
3.
Xie
,
Y.
,
Tang
,
J.
,
Shi
,
S.
,
Xing
,
Y.
,
Wu
,
H.
,
Hu
,
Z.
, and
Wen
,
D.
,
2017
, “
Experimental and Numerical Investigation on Integrated Thermal Management for Lithium–Ion Battery Pack With Composite Phase Change Materials
,”
Energy Convers. Manag.
,
154
(
October
), pp.
562
575
.10.1016/j.enconman.2017.11.046
4.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
(
May 2017
), pp.
246
267
.10.1016/j.ensm.2017.05.013
5.
Xu
,
J.
,
Lan
,
C.
,
Qiao
,
Y.
, and
Ma
,
Y.
,
2017
, “
Prevent Thermal Runaway of Lithium–Ion Batteries With Minichannel Cooling
,”
Appl. Therm. Eng.
,
110
, pp.
883
890
.10.1016/j.applthermaleng.2016.08.151
6.
Peng
,
P.
, and
Jiang
,
F.
,
2016
, “
Thermal Safety of Lithium–Ion Batteries With Various Cathode Materials: A Numerical Study
,”
Int. J. Heat Mass Trans.
,
103
, pp.
1008
1016
.10.1016/j.ijheatmasstransfer.2016.07.088
7.
Dincer
,
I.
,
Hamut
,
HS.
, and
Javani
,
N.
,
2017
,
Thermal Management of Electric Vehicle Battery Systems
,
Wiley Ltd, New York
.
8.
Şencan Şahin
,
A.
,
Kılıç
,
B.
, and
Kılıç
,
U.
,
2011
, “
Design and Economic Optimization of Shell and Tube Heat Exchangers Using Artificial Bee Colony (ABC) Algorithm
,”
Energy Convers. Manag.
,
52
(
11
), pp.
3356
3362
.10.1016/j.enconman.2011.07.003
9.
Rao
,
R. V.
,
More
,
K. C.
,
Taler
,
J.
, and
Ocłoń
,
P.
,
2016
, “
Dimensional Optimization of a Micro-Channel Heat Sink Using Jaya Algorithm
,”
Appl. Therm. Eng.
,
103
, pp.
572
582
.10.1016/j.applthermaleng.2016.04.135
10.
Copiello
,
D.
, and
Fabbri
,
G.
,
2009
, “
Multi-Objective Genetic Optimization of the Heat Transfer From Longitudinal Wavy Fins
,”
Int. J. Heat Mass Trans.
,
52
(
5–6
), pp.
1167
1176
.10.1016/j.ijheatmasstransfer.2008.09.012
11.
Hadidi
,
A.
,
2015
, “
A Robust Approach for Optimal Design of Plate Fin Heat Exchangers Using Biogeography Based Optimization (BBO) Algorithm
,”
Appl. Energy
,
150
, pp.
196
210
.10.1016/j.apenergy.2015.04.024
12.
Mahamud
,
R.
, and
Park
,
C.
,
2011
, “
Reciprocating Air Flow for Li–Ion Battery Thermal Management to Improve Temperature Uniformity
,”
J. Power Sources
,
196
(
13
), pp.
5685
5696
.10.1016/j.jpowsour.2011.02.076
13.
Yu
,
K.
,
Yang
,
X.
,
Cheng
,
Y.
, and
Li
,
C.
,
2014
, “
Thermal Analysis and Two-Directional Air Flow Thermal Management for Lithium–Ion Battery Pack
,”
J. Power Sources
,
270
, pp.
193
200
.10.1016/j.jpowsour.2014.07.086
14.
Saw
,
L. H.
,
Ye
,
Y.
,
Tay
,
A. A. O.
,
Chong
,
W. T.
,
Kuan
,
S. H.
, and
Yew
,
M. C.
,
2016
, “
Computational Fluid Dynamic and Thermal Analysis of Lithium–Ion Battery Pack With Air Cooling
,”
Appl. Energy
,
177
, pp.
783
792
.10.1016/j.apenergy.2016.05.122
15.
Lu
,
Z.
,
Meng
,
X.
,
Wei
,
L.
,
Hu
,
W.
,
Zhang
,
L.
, and
Jin
,
L. W.
,
2016
, “
Thermal Management of Densely-Packed EV Battery With Forced Air Cooling Strategies
,”
Energy Procedia
,
88
, pp.
682
688
.10.1016/j.egypro.2016.06.098
16.
Liu
,
Y.
,
Ouyang
,
C.
,
Jiang
,
Q.
, and
Liang
,
B.
,
2015
, “
Design and Parametric Optimization of Thermal Management of Lithium–Ion Battery Module With Reciprocating Air-Flow
,”
J. Cent. South Univ.
,
22
(
10
), pp.
3970
3976
.10.1007/s11771-015-2941-8
17.
Na
,
X.
,
Kang
,
H.
,
Wang
,
T.
, and
Wang
,
Y.
,
2018
, “
Reverse Layered Air Flow for Li–Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
143
, pp.
257
262
.10.1016/j.applthermaleng.2018.07.080
18.
He
,
F.
, and
Ma
,
L.
,
2015
, “
Thermal Management of Batteries Employing Active Temperature Control and Reciprocating Cooling Flow
,”
Int. J. Heat Mass Trans.
,
83
, pp.
164
172
.10.1016/j.ijheatmasstransfer.2014.11.079
19.
Chalise
,
D.
,
Shah
,
K.
,
Prasher
,
R.
, and
Jain
,
A.
,
2018
, “
Conjugate Heat Transfer Analysis of Air/Liquid Cooling of a Li–Ion Battery Pack
,”
J. Electrochem. Energy Convers. Storage
,
15
(
1
), p. 011008
.10.1115/1.4038258
20.
Li
,
W.
,
Peng
,
X.
,
Xiao
,
M.
,
Garg
,
A.
, and
Gao
,
L.
,
2019
, “
Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3668
3680
.10.1002/er.4518
21.
Chen
,
K.
,
Song
,
M.
,
Wei
,
W.
, and
Wang
,
S.
,
2018
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System With U-Type Flow for Cooling Efficiency Improvement
,”
Energy
,
145
, pp.
603
613
.10.1016/j.energy.2017.12.110
22.
Wang
,
X.
,
Li
,
M.
,
Liu
,
Y.
,
Sun
,
W.
,
Song
,
X.
, and
Zhang
,
J.
,
2017
, “
Surrogate Based Multidisciplinary Design Optimization of Lithium–Ion Battery Thermal Management System in Electric Vehicles
,”
Struct. Multidiscip. Optim.
,
56
(
6
), pp.
1555
1570
.10.1007/s00158-017-1733-1
23.
Mousavi
,
M.
,
Hoque
,
S.
,
Rahnamayan
,
S.
,
Dincer
,
I.
, and
N
,
G.
,
2011
, “
Optimal Design of an Air-Cooling System for a Li–Ion Battery Pack in Electric Vehicles With a Genetic Algorithm
,”
In 2011 IEEE Congress of Evolutionary Computation (CEC)
, New Orleans, LA, June 5–8, pp.
1848
1855
.
24.
Ye
,
B.
,
Rubel
,
M. R. H.
, and
Li
,
H.
,
2019
, “
Design and Optimization of Cooling Plate for Battery Module of an Electric Vehicle
,”
Appl. Sci.
,
9
(
4
), pp.
754
774
.
25.
Deng
,
T.
,
Ran
,
Y.
,
Yin
,
Y.
, and
Liu
,
P.
,
2020
, “
Multi-Objective Optimization Design of Thermal Management System for Lithium–Ion Battery Pack Based on Non-Dominated Sorting Genetic Algorithm II
,”
Appl. Therm. Eng.
,
164
(
66
), p.
114394
.10.1016/j.applthermaleng.2019.114394
26.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
C
,
L.
,
2017
, “
Structure Optimization of Parallel Air-Cooled Battery Thermal Management System
,”
Int. J. Heat Mass Trans.
,
111
, pp.
943
52
.10.1016/j.ijheatmasstransfer.2017.04.026
27.
Chen
,
K.
,
Wang
,
S.
,
Song
,
M.
, and
C
,
L.
,
2017
, “
Configuration Optimization of Battery Pack in Parallel Air-Cooled Battery Thermal Management System Using an Optimization Strategy
,”
Appl. Therm. Eng.
,
123
, pp.
177
86
.10.1016/j.applthermaleng.2017.05.060
28.
Li
,
M.
,
Liu
,
Y.
,
Wang
,
X.
, and
Zhang
,
J.
,
2019
, “
Modeling and Optimization of an Enhanced Battery Thermal Management System in Electric Vehicles
,”
Front. Mech. Eng.
,
14
(
1
), pp.
65
75
.10.1007/s11465-018-0520-z
29.
Deng
,
T.
,
Ran
,
Y.
,
Yin
,
Y.
,
Chen
,
X.
, and
Liu
,
P.
,
2019
, “
Multi-Objective Optimization Design of Double-Layered Reverting Cooling Plate for Lithium–Ion Batteries
,”
Int. J. Heat Mass Trans.
,
143
(
1
), p.
118580
.10.1016/j.ijheatmasstransfer.2019.118580
30.
Zhifu
,
W.
,
Yupu
,
W.
,
Zhi
,
L.
,
Qiang
,
S.
, and
Yinan
,
R.
,
2016
, “
The Optimal Charging Method Research for Lithium–Ion Batteries Used in Electric Vehicles
,”
Energy Procedia
,
104
, pp.
74
79
.10.1016/j.egypro.2016.12.014
31.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium‐Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.10.1002/er.1956
32.
Yeow
,
K.
,
Teng
,
H.
,
Thelliez
,
M.
, and
Tan
,
E.
,
2012
, “
3D Thermal Analysis of Li–Ion Battery Cells With Various Geometries and Cooling Conditions Using Abaqus
,”
Imechanica.Org, (Figure 1)
, pp.
1
17
.https://imechanica.org/files/Yeow_AVL_final_2202012.pdf
33.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.10.1016/j.jpowsour.2012.02.038
34.
Afzal
,
A.
,
Samee
,
A. D. M.
,
Razak
,
R. K. A.
, and
Ramis
,
M. K.
,
2021
, “
Thermal Management of Modern Electric Vehicle Battery Systems (MEVBS)
,”
J. Therm. Anal. Calorim.
,
144
, pp. 1271–1285.
10.1007/s10973-020-09606-x
35.
Afzal
,
A.
,
Mohammed Samee
,
A. D.
,
Abdul Razak
,
R. K.
, and
Ramis
,
M. K.
,
2019
, “
Effect of Spacing on Thermal Performance Characteristics of Li–Ion Battery Cells
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1797
1811
.10.1007/s10973-018-7664-2
36.
Mokashi
,
I.
,
Afghan
,
S.
,
Abdullah
,
N. A.
,
Azami
,
M. H. B.
, and
Afzal
,
A.
,
2020
, “
Maximum Temperature Analysis in a Li‐Ion Battery Pack Cooled by Different Fluids
,”
J. Therm. Anal. Calorim.
,
141
, pp.
2555
–2571
.10.1007/s10973-020-10063-9
37.
Jilte
,
R.
,
Afzal
,
A.
,
Islam
,
M. T.
, and
Manokar
,
A. M.
,
2021
, “
Hybrid Cooling of Cylindrical Battery With Liquid Channels in Phase Change Material
,”
Int. J. Energy Res.
,
45
(
7
), pp.
11065
11083
.10.1002/er.6590
38.
Jilte
,
R.
,
Afzal
,
A.
, and
Panchal
,
S.
,
2021
, “
A Novel Battery Thermal Management System Using Nano-Enhanced Phase Change Materials
,”
Energy
,
219
, p.
119564
.10.1016/j.energy.2020.119564
39.
Malik
,
M.
,
Dincer
,
I.
,
Rosen
,
M. A.
,
Mathew
,
M.
, and
Fowler
,
M.
,
2018
, “
Thermal and Electrical Performance Evaluations of Series Connected Li–Ion Batteries in a Pack With Liquid Cooling
,”
Appl. Therm. Eng.
,
129
, pp.
472
481
.10.1016/j.applthermaleng.2017.10.029
40.
Yang
,
T.
,
Yang
,
N.
,
Zhang
,
X.
, and
Li
,
G.
,
2016
, “
Investigation of the Thermal Performance of Axial-Flow Air Cooling for the Lithium–Ion Battery Pack
,”
Int. J. Therm. Sci.
,
108
, pp.
132
144
.10.1016/j.ijthermalsci.2016.05.009
41.
Hofmann
,
A.
,
Uhlmann
,
N.
,
Ziebert
,
C.
,
Wiegand
,
O.
,
Schmidt
,
A.
, and
Hanemann
,
T.
,
2017
, “
Preventing Li–Ion Cell Explosion During Thermal Runaway With Reduced Pressure
,”
Appl. Therm. Eng.
,
124
, pp.
539
544
.10.1016/j.applthermaleng.2017.06.056
42.
Leng
,
F.
,
Tan
,
C. M.
, and
Pecht
,
M.
,
2015
, “
Effect of Temperature on the Aging Rate of Li Ion Battery Operating Above Room Temperature
,”
Sci. Rep.
,
5
, article no. 12967.10.1038/srep12967
43.
Chen
,
K.
,
Unsworth
,
G.
, and
Li
,
X.
,
2014
, “
Measurements of Heat Generation in Prismatic Li–Ion Batteries
,”
J. Power Sources
,
261
, pp.
28
37
.10.1016/j.jpowsour.2014.03.037
44.
Srinivasan
,
V.
, and
Wang
,
C. Y.
,
2003
, “
Analysis of Electrochemical and Thermal Behavior of Li–Ion Cells
,”
J. Electrochem. Soc.
,
150
(
1
), p.
A98
.10.1149/1.1526512
45.
Dincer
,
I.
,
Hamut
,
H.
, and
Javani
,
N.
,
2017
,
Thermal Management of Electric Vehicle Battery Systems
,
Wiley Ltd
,
New York
(Automotive Series).
46.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
,
1982
, “
High-Re Solutions for Incompressible Flow Using the Navier–Stokes Equations and a Multigrid Method
,”
J. Comput. Phys.
,
48
(
3
), pp.
387
411
.10.1016/0021-9991(82)90058-4
47.
Jahangeer
,
S.
,
Ramis
,
M. K.
, and
Jilani
,
G.
,
2007
, “
Conjugate Heat Transfer Analysis of a Heat Generating Vertical Plate
,”
Int. J. Heat Mass Trans.
,
50
(
1–2
), pp.
85
93
.10.1016/j.ijheatmasstransfer.2006.06.042
48.
Ramis
,
M. K.
, and
Jilani
,
G.
,
2010
, “
Heat and Fluid Flow Characteristics of Liquid Sodium Flowing Past a Nuclear Fuel Element With Non-Uniform Energy Generation
,”
Int. J. Heat Mass Trans.
,
53
(
9–10
), pp.
1682
1690
.10.1016/j.ijheatmasstransfer.2010.01.021
49.
Xi
,
H.
,
Li
,
M. J.
,
Xu
,
C.
, and
He
,
Y. L.
,
2013
, “
Parametric Optimization of Regenerative Organic Rankine Cycle (ORC) for Low Grade Waste Heat Recovery Using Genetic Algorithm
,”
Energy
,
58
, pp.
473
482
.10.1016/j.energy.2013.06.039
50.
Gosselin
,
L.
,
Tye-Gingras
,
M.
, and
Mathieu-Potvin
,
F.
,
2009
, “
Review of Utilization of Genetic Algorithms in Heat Transfer Problems
,”
Int. J. Heat Mass Trans.
,
52
(
9–10
), pp.
2169
2188
.10.1016/j.ijheatmasstransfer.2008.11.015
51.
Liu
,
Y.
,
Yang
,
J.
,
Xu
,
J.
,
Cheng
,
Z. L.
, and
Wang
,
Q. W.
,
2015
, “
Integration of Genetic Programing With Genetic Algorithm for Correlating Heat Transfer Problems
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
6
), p. 061012.10.1115/1.4029871
52.
Nagose
,
A.
,
Somani
,
A.
,
Shrot
,
A.
, and
Narasimhan
,
A.
,
2008
, “
Genetic Algorithm Based Optimization of PCM Based Heat Sinks and Effect of Heat Sink Parameters on Operational Time
,”
ASME J. Heat Transfer-Trans. ASME
,
130
(
1
), p. 01140110.1115/1.2780182.
53.
Aasi
,
H. K.
, and
Mishra
,
M.
,
2019
, “
A Novel Equivalence Approximate Model for Second Law Based Optimization of Three-Fluid Cross-Flow Plate-Fin Heat Exchanger Using Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
11
), p. 11180210.1115/1.4044593.
54.
Geb
,
D.
,
Zhou
,
F.
,
DeMoulin
,
G.
, and
Catton
,
I.
,
2013
, “
Genetic Algorithm Optimization of a Finned-Tube Heat Exchanger Modeled With Volume-Averaging Theory
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
8
), p. 082602.10.1115/1.4024091
55.
Ge
,
Y.
,
Xin
,
F.
,
Pan
,
Y.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Optimal Arrangement Design of a Tube Bundle in Cross-Flow Using Computational Fluid Dynamics and Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
7
), p. 071801.10.1115/1.4043570
56.
Wang
,
Q. W.
,
Xie
,
G. N.
,
Peng
,
B. T.
, and
Zeng
,
M.
,
2007
, “
Experimental Study and Genetic-Algorithm-Based Correlation on Shell-Side Heat Transfer and Flow Performance of Three Different Types of Shell-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer-Trans. ASME
,
129
(
9
), pp.
1277
1285
.10.1115/1.2739611
57.
Ahmadi
,
P.
,
Hajabdollahi
,
H.
, and
Dincer
,
I.
,
2011
, “
Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
2
), p. 021801.10.1115/1.4002599
58.
Ge
,
Y.
,
Shan
,
F.
,
Liu
,
Z.
, and
Liu
,
W.
,
2018
, “
Optimal Structural Design of a Heat Sink With Laminar Single-Phase Flow Using Computational Fluid Dynamics-Based Multi-Objective Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
140
(
2
), p. 022803..10.1115/1.4037643
59.
Estrada
,
E. D. S. D.
,
Fagundes
,
T. M.
,
Isoldi
,
L. A.
,
Dos Santos
,
E. D.
,
Xie
,
G.
, and
Rocha
,
L. A. O.
,
2015
, “
Constructal Design Associated to Genetic Algorithm of Asymmetric V-Shaped Pathways
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
6
), p. 061010.10.1115/1.4029868
60.
Wang
,
Q. W.
,
Zhang
,
D. J.
, and
Xie
,
G. N.
,
2009
, “
Experimental Study and Genetic-Algorithm-Based Correlation on Pressure Drop and Heat Transfer Performances of a Cross-Corrugated Primary Surface Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
6
), pp.
1
8
.10.1115/1.3090716
61.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
Santos
,
E. D. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective y-shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
7
), p. 071702.10.1115/1.4027195
62.
Wolfersdor
,
J. V.
,
Achermann
,
E.
, and
Weigand
,
B.
,
1997
, “
Shape Optimization of Cooling Channels Using Genetic Algorithms
,”
ASME J. Heat Transfer-Trans. ASME
,
119
(
2
), pp.
380
388
.10.1115/1.2824239
63.
Alizadeh
,
M.
, and
Sadrameli
,
S. M.
,
2016
, “
Modeling of Thermal Cracking Furnaces Via Exergy Analysis Using Hybrid Artificial Neural Network–Genetic Algorithm
,”
ASME J. Heat Transfer-Trans. ASME
,
138
(
4
), p. 042801.10.1115/1.4032171
64.
Maleki
,
H.
,
Hallaj
,
S. A.
,
Selman
,
J. R.
,
Dinwiddie
,
R. B.
, and
Wang
,
H.
,
1999
, “
Thermal Properties of Lithium–Ion Battery and Components
,”
J. Electrochem. Soc.
,
146
(
3
), pp.
947
954
.10.1149/1.1391704
65.
Chen
,
K.
,
2013
,
Heat Generation Measurements of Prismatic Lithium Ion Batteries
,
University of Waterloo
, Waterloo, ON, Canada.
66.
Earn
,
L. C.
,
Yen
,
T. W.
, and
Ken
,
T. L.
,
2017
, “
The Investigation on SIMPLE and SIMPLER Algorithm Through Lid Driven Cavity
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
29
(
1
), pp.
10
23
.
67.
Afzal
,
A.
,
Ansari
,
Z.
,
Faizabadi
,
A.
, and
Ramis
,
M.
,
2017
, “
Parallelization Strategies for Computational Fluid Dynamics Software: State of the Art Review
,”
Arch. Comput. Methods Eng.
,
24
(
2
), pp.
337
363
.10.1007/s11831-016-9165-4
68.
Pinto
,
R.
,
Afzal
,
A.
,
D'Souza
,
L.
,
Ansari
,
Z.
, and
Mohammed Samee
,
A. D.
,
2017
, “
Computational Fluid Dynamics in Turbomachinery: A Review of State of the Art
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
467
479
.10.1007/s11831-016-9175-2
69.
Pinto
,
R. N.
,
Afzal
,
A.
,
Navaneeth
,
I. M.
, and
Ramis
,
M. K.
,
2016
, “
Computational Analysis of Flow in Turbines
,”
In Inventive Computation Technologies (ICICT), International Conference On
,
IEEE
,
Coimbatore, India
, pp.
1
5
.
You do not currently have access to this content.