Abstract

Lasers and laser heating have a wide variety of applications such as spectroscopy, laser welding, laser cutting, and even biological applications like tumor irradiation and surgery. Theoretical modeling of laser heating has proven to be quite difficult, and classical heating equations have shown to be inaccurate due to the large temperature gradients created by the laser heating. Furthermore, the commonly used Fourier's Law assumed the speed for a thermal wave to propagate as infinite; this is unrealistic in any medium and especially in domains with slow propagation speeds such as biological media and in fast nano/microscale heating applications. This study helps fill some of the gaps in accurate model of laser heating by presenting unique 1D and 2D models of the analytically solved Dual-Phase-Lag heating equations which can much more accurately describe the temperature of such interactions in both the temporal and spatial domains.

References

1.
Xu
,
F.
,
Moon
,
S.
,
Zhang
,
X.
,
Shao
,
L.
,
Song
,
Y. S.
, and
Demirci
,
U.
,
2010
, “
Multi-Scale Heat and Mass Transfer Modelling of Cell and Tissue Cryopreservation
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
368
(
1912
), pp.
561
583
.10.1098/rsta.2009.0248
2.
Peshkov
,
V.
,
1944
, “
Second Sound in Helium II
,”
J. Phys.
,
8
(
381
), pp.
381
389
.
3.
Majchrzak
,
E.
, and
Mochnacki
,
B.
,
2018
, “
Dual-Phase Lag Model of Thermal Processes in a Multi-Layered Microdomain Subjected to a Strong Laser Pulse Using the Implicit Scheme of FDM
,”
Int. J. Therm. Sci.
,
133
, pp.
240
251
.10.1016/j.ijthermalsci.2018.07.030
4.
Orlande
,
H. R. B.
,
Özisik
,
M. N.
, and
Tzou
,
D. Y.
,
1995
, “
Inverse Analysis for estimating the Electron phonon Coupling Factor in Thin metal Films
,”
J. Appl. Phys.
,
78
(
3
), pp.
1843
1849
.10.1063/1.360218
5.
Cattaneo
,
C.
,
1958
, “
A Form of the Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation
,”
Comp. Rend.
,
247
, pp.
431
433
.
6.
Vernotte
,
P.
,
1958
, “
Les Paradoxes de la Theorie Continue de L'equation de la Chaleur
,”
Comp. Rend.
,
246
, pp.
3154
3155
.
7.
Tang
,
D. W.
, and
Araki
,
N.
,
1996
, “
The Wave Characteristics of Thermal Conduction in Metallic Films Irradiated by Ultra-Short Laser Pulses
,”
J. Phys. D: Appl. Phys.
,
29
(
10
), pp.
2527
2533
.10.1088/0022-3727/29/10/001
8.
Vedavarz
,
A.
,
Kumar
,
S.
, and
Moallemi
,
M. K.
,
1994
, “
Significance of Non-Fourier Heat Waves in Conduction
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
1
), pp.
221
224
.10.1115/1.2910859
9.
Antaki
,
P. J.
,
2005
, “
New Interpretation of Non-Fourier Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
2
), pp.
189
193
.10.1115/1.1844540
10.
Anisimov
,
S. I.
,
Kapeliovich
,
B. L.
, and
Perel'man
,
T. L.
,
1974
, “
Electron Emission From Metal Surfaces Exposed to Ultra-Short Laser Pulses
,”
Sov. Phys. JETP
,
39
(
3
), pp.
75
377
.
11.
Qiu
,
T. Q.
,
Juhasz
,
T.
,
Suarez
,
C.
,
Bron
,
W. E.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals—II. Experiments
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2799
2808
.10.1016/0017-9310(94)90397-2
12.
Tzou
,
D. Y.
,
1995
, “
A Unified Approach for Heat Conduction From Macro to Micro Scales
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
1
), pp.
8
16
.10.1115/1.2822329
13.
Hetnarski
,
R. B.
,
2014
,
Encyclopedia of Thermal Stresses
,
Springer
,
Dordrecht, The Netherlands
.
14.
Tzou
,
D. Y.
,
1997
,
Macro- to Microscale Heat Transfer: The Lagging Behavior
,
Taylor & Francis
,
Washington, DC
.
15.
Ciesielski
,
M.
,
2017
, “
Analytical Solution of the Dual Phase Lag Equation Describing the Laser Heating of Thin Metal Film
,”
J. Appl. Math. Comput. Mech.
,
16
(
1
), pp.
33
40
.10.17512/jamcm.2017.1.03
16.
Monte
,
F.
, and
Haji-Sheikh
,
A.
,
2017
, “
Bio-Heat Diffusion Under Local Thermal Non-Equilibrium Conditions Using Dual-Phase Lag-Based Green's Functions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
1291
1305
.10.1016/j.ijheatmasstransfer.2017.06.006
17.
Alkhairy
,
R.
,
2012
, “
Green's Function Solution for the Dual-Phase-Lag Heat Equation
,”
Appl. Math.
,
03
(
10
), pp.
1170
1178
.10.4236/am.2012.310171
18.
Janicki
,
M.
,
Samson
,
A.
,
Raszkowski
,
T.
,
Zubert
,
M.
, and
Napieralski
,
A.
,
2015
, “
Comparison of Greens Function Solutions for Different Heat Conduction Models in Electronic Nanostructures
,”
Microelectron. J.
,
46
(
12
), pp.
1162
1166
.10.1016/j.mejo.2015.07.008
19.
Ma
,
J.
,
Sun
,
Y.
, and
Yang
,
J.
,
2018
, “
Analytical Solution of Dual-Phase-Lag Heat Conduction in a Finite Medium Subjected to a Moving Heat Source
,”
Int. J. Therm. Sci.
,
125
, pp.
34
43
.10.1016/j.ijthermalsci.2017.11.005
20.
McDonough
,
J.
,
Kunadian
,
I.
,
Kumar
,
R.
, and
Yang
,
T. L.
,
2006
, “
An Alternative Discretization and Solution Procedure for the Dual Phase-Lag Equation
,”
J. Comput. Phys.
,
219
(
1
), pp.
163
171
.10.1016/j.jcp.2006.03.023
21.
Brorson
,
S. D.
,
Fujimoto
,
J. G.
, and
Ippen
,
E. P.
,
1987
, “
Femtosecond Electronic Heat-Transfer Dynamics in Thin Gold Film
,”
Phys. Rev. Lett.
,
59
(
17
), pp.
1962
1965
.10.1103/PhysRevLett.59.1962
22.
Chiu
,
K. S.
,
1999
, “
Temperature Dependent Properties and Microvoid in Thermal Lagging
,” Ph.D. dissertation,
University of Missouri-Columbia
,
Columbia, MO
.
23.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating of Metals
,”
ASME J. Heat Transfer-Trans. ASME
,
115
(
4
), pp.
835
841
.10.1115/1.2911377
24.
Qiu
,
T. Q.
, and
Tien
,
C. L.
,
1994
, “
Femtosecond Laser Heating of Multi-Layer Metals—I. Analysis
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2789
2797
.10.1016/0017-9310(94)90396-4
25.
Polyanin
,
A. D.
, and
Nazaikinskii
,
V. E.
,
2016
,
Handbook of Linear Partial Differential Equations for Engineers and Scientists
, 2nd ed.,
CRC Press
,
Boca Raton, London
.
26.
Wang
,
L.
,
Zhou
,
X.
, and
Wei
,
X.
,
2008
,
Heat Conduction: Mathematical Models and Analytical Solutions
,
Springer
,
Berlin, Heidelberg, Germany
.
27.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
2014
,
Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables
,
Martino Publishing
,
Mansfield Centre, CT
.
28.
Frankel
,
J. I.
,
Vick
,
B.
, and
Özisik
,
M. N.
,
1985
, “
Flux Formulation of Hyperbolic Heat Conduction
,”
J. Appl. Phys.
,
58
(
9
), pp.
3340
3345
.10.1063/1.335795
29.
Han
,
P.
,
Tang
,
D.
, and
Zhou
,
L.
,
2006
, “
Numerical Analysis of Two-Dimensional Lagging Thermal Behavior Under Short-Pulse-Laser Heating on Surface
,”
Int. J. Eng. Sci.
,
44
(
20
), pp.
1510
1519
.10.1016/j.ijengsci.2006.08.012
You do not currently have access to this content.