Abstract

Vascular gas embolism—bubble entry into the blood circulation - is pervasive in medicine, including over 340,000 cardiac surgery patients in the U.S. annually. The gas–liquid interface interacts directly with constituents in blood, including cells and proteins, and with the endothelial cells lining blood vessels to provoke a variety of undesired biological reactions. Surfactant therapy, a potential preventative approach, is based on fluid dynamics and transport mechanics. Herein we review literature relevant to the understanding the key gas–liquid interface interactions inciting injury at the molecular, organelle, cellular, and tissue levels. These include clot formation, cellular activation, and adhesion events. We review the fluid physics and transport dynamics of surfactant-based interventions to reduce tissue injury from gas embolism. In particular, we focus on experimental research and computational and numerical approaches involving how surface-active chemical-based intervention. This is based on surfactant competition with blood-borne or cell surface-borne macromolecules for surface occupancy of gas–liquid interfaces to alter cellular mechanics, mechanosensing, and signaling coupled to fluid stress exposures occurring in gas embolism. We include a new analytical approach for which an asymptotic solution to the Navier–Stokes equations coupled to the convection-diffusion interaction for a soluble surfactant provides additional insight regarding surfactant transport with a bubble in non-Newtonian fluid.

References

1.
Abu-Omar
,
Y.
,
Balacumaraswami
,
L.
,
Pigott
,
D. W.
,
Matthews
,
P. M.
, and
Taggart
,
D. P.
,
2004
, “
Solid and Gaseous Cerebral Microembolization During Off-Pump, On-Pump, and Open Cardiac Surgery Procedures
,”
J. Thorac. Cardiovasc. Surg.
,
127
(
6
), pp.
1759
1765
.10.1016/j.jtcvs.2003.09.048
2.
Holzman
,
R. S.
,
Yoo
,
L.
,
Fox
,
V. L.
, and
Fishman
,
S. J.
,
2005
, “
Air Embolism During Intraoperative Endoscopic Localization and Surgical Resection FLR Blue Rubber Bleb Nevus Syndrome
,”
Anesthesiology
,
102
(
6
), pp.
1279
1280
.10.1097/00000542-200506000-00029
3.
Grove
,
J. J.
,
Shinaman
,
R. C.
, and
Drover
,
D. R.
,
2004
, “
Noncardiogenic Pulmonary Edema and Venous Air Embolus as Complications of Operative Hysteroscopy
,”
J. Clin. Anesth.
,
16
(
1
), pp.
48
50
.10.1016/j.jclinane.2003.03.010
4.
Martay
,
K.
,
Dembo
,
G.
,
Vater
,
Y.
,
Charpentier
,
K.
,
Levy
,
A.
,
Bakthavatsalam
,
R.
, and
Freund
,
P. R.
,
2003
, “
Unexpected Surgical Difficulties Leading to Hemorrhage and Gas Embolus During Laparoscopic Donor Nephrectomy: A Case Report
,”
Can. J. Anaesth.
,
50
(
9
), pp.
891
894
.10.1007/BF03018734
5.
Chakravarti
,
R.
,
Singh
,
V.
,
Isaac
,
R.
, and
John
,
M. J.
,
2004
, “
Fatal Paradoxical Pulmonary Air Embolism Complicating Percutaneous Computed Tomography-Guided Needle Biopsy of the Lung
,”
Aust. Radiol.
,
48
(
2
), pp.
204
206
.10.1111/j.1440-1673.2004.01297.x
6.
Bithal
,
P. K.
,
Pandia
,
M. P.
,
Dash
,
H. H.
,
Chouhan
,
R. S.
,
Mohanty
,
B.
, and
Padhy
,
N.
,
2004
, “
Comparative Incidence of Venous Air Embolism and Associated Hypotension in Adults and Children Operated for Neurosurgery in the Sitting Position
,”
Eur. J. Anaesthesiol.
,
21
(
7
), pp.
517
522
.10.1097/00003643-200407000-00003
7.
Teichgraber
,
U. K.
, and
Benter
,
T.
,
2004
, “
Images in Clinical Medicine. Air Embolism After the Insertion of a Central Venous Catheter
,”
New Engl. J. Med.
,
350
(
19
), p.
e172004
.10.1056/ENEJMicm020866
8.
Gorji
,
R.
, and
Camporesi
,
E. M.
,
2004
, “
Hyperbaric Oxygen Therapy in the Treatment of Carbon Dioxide Gas Embolism
,”
Undersea Hyperbaric Med.
,
31
(
3
), pp.
285
289
.https://www.researchgate.net/publication/8159907_Hyperbaric_oxygen_therapy_in_the_treatment_of_carbon_dioxide_gas_embolism
9.
Frasco
,
P. E.
,
Caswell
,
R. E.
, and
Novicki
,
D.
,
2004
, “
Venous Air Embolism During Transurethral Resection of the Prostate
,”
Anesth. Anal.
,
99
(
6
), pp.
1864
1866
.10.1213/01.ANE.0000136847.41264.60
10.
Turgeman
,
Y.
,
Antonelli
,
D.
,
Atar
,
S.
, and
Rosenfeld
,
T.
,
2004
, “
Massive Transient Pulmonary Air Embolism During Pacemaker Implantation Under Mild Sedation: An Unrecognized Hazard of Snoring
,”
Pacing Clin. Electrophysiol.
,
27
(
5
), pp.
684
685
.10.1111/j.1540-8159.2004.00510.x
11.
Ledowski
,
T.
,
Kiese
,
F.
,
Jeglin
,
S.
, and
Scholz
,
J.
,
2005
, “
Possible Air Embolism During Eye Surgery
,”
Anesth. Analg.
,
100
(
6
), pp.
1651
1652
.10.1213/01.ANE.0000154304.63828.C0
12.
Avanzas
,
P.
,
Garcia-Fernandez
,
M. A.
, and
Quiles
,
J.
,
2003
, “
Echocardiographic Detection of Systemic Air Embolism During Positive Pressure Ventilation
,”
Heart (Brit. Card. Soc.)
,
89
(
11
), pp.
1321
1321
.10.1136/heart.89.11.1321
13.
Imai
,
S.
,
Tamada
,
T.
,
Gyoten
,
M.
,
Yamashita
,
T.
, and
Kajihara
,
Y.
,
2004
, “
Iatrogenic Venous Air Embolism Caused by CT Injector–From a Risk Management Point of View
,”
Radiat. Med.
,
22
(
4
), pp.
269
271
.
14.
Smerz
,
R. W.
,
2005
, “
Concomitant Cerebral and Coronary Arterial as Emboli in a Sport Diver: A Case Report
,”
Hawaii Med. J.
,
64
(
1
), pp.
12
13
.
15.
Risberg
,
J.
,
Englund
,
M.
,
Aanderud
,
L.
,
Eftedal
,
O.
,
Flook
,
V.
, and
Thorsen
,
E.
,
2004
, “
Venous Gas Embolism in Chamber Attendants After Hyperbaric Exposure
,”
Undersea Hyperbaric Med.
,
31
(
4
), pp.
417
429
.
16.
Challa
,
V. R.
,
Moody
,
D. M.
, and
Troost
,
B. T.
,
1993
, “
Brain Embolic Phenomena Associated With Cardiopulmonary Bypass
,”
J Neurol. Sci.
,
117
(
1–2
), pp.
224
231
.10.1016/0022-510X(93)90177-Z
17.
Moody
,
D. M.
,
Bell
,
M. A.
,
Challa
,
V. R.
,
Johnston
,
W. E.
, and
Prough
,
D. S.
,
1990
, “
Brain Microemboli During Cardiac Surgery or Aortography
,”
Ann. Neurol.
,
28
(
4
), pp.
477
486
.10.1002/ana.410280403
18.
Mangano
,
C. M.
,
1997
, “
Scuds, Scads, and Other Air-Borne Hazards
,”
Anesthesiology
,
87
(
3
), pp.
476
478
.10.1097/00000542-199709000-00004
19.
Hammon
,
J. W.
,
Stump
,
D. A.
,
Butterworth
,
J. B.
, and
Moody
,
D. M.
,
2001
, “
Approaches to Reduce Neurologic Complications During Cardiac Surgery
,”
Semin. Thorac. Cardiovasc. Surg.
,
13
(
2
), pp.
184
191
.10.1053/stcs.2001.24079
20.
Gottesman
,
R. F.
,
McKhann
,
G. M.
, and
Hogue
,
C. W.
,
2008
, “
Neurological Complications of Cardiac Surgery
,”
Semin Neurol.
,
28
(
5
) pp.
703
715
.10.1055/s-0028-1105973
21.
Roach
,
G. W.
,
Kanchuger
,
M.
,
Mangano
,
C. M.
,
Newman
,
M.
,
Nussmeier
,
N.
,
Wolman
,
R.
,
Aggarwal
,
A.
,
Marschall
,
K.
,
Graham
,
S. H.
,
Ley
,
C.
,
Ozanne
,
G.
,
Mangano
,
D. T.
,
Herskowitz
,
A.
,
Katseva
,
V.
, and
Sears
,
R.
,
1996
, “
Adverse Cerebral Outcomes After Coronary Bypass Surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators
,”
N. Engl. J. Med.
,
335
(
25
), pp.
1857
1863
.10.1056/NEJM199612193352501
22.
Philp
,
R. B.
,
Inwood
,
M. J.
, and
Warren
,
B. A.
,
1972
, “
Interactions Between as Bubbles and Components of the Blood: Implications in Decompression Sickness
,”
Aerosp. Med.
,
43
(
9
), pp.
946
953
.
23.
Warren
,
B. A.
,
Philp
,
R. B.
, and
Inwood
,
M. J.
,
1973
, “
The Ultrastructural Morphology of Air Embolism: Platelet Adhesion to the Interface and Endothelial Damage
,”
Br. J. Exp. Path.
,
54
, pp.
163
172
.
24.
Willard
,
J. R.
, and
Hollingsworth
,
D. K.
,
2018
, “
Numerical Investigation of Flow Structure and Heat Transfer Produced by a Single Highly Confined Bubble in a Pressure-Driven Channel Flow
,”
ASME J. Heat Transfer
,
140
(
4
), p.
042402
.10.1115/1.4038233
25.
Manoharan
,
S.
,
Kalaikadal
,
D.
,
Manglik
,
R. M.
,
Jog
,
M. A.
,
Iskrenova-Ekiert
,
E.
, and
Patnaik
,
S. S.
,
2015
, “
Visualization of Multiscale Processes—Bubble Dynamics in Surface Active Colloids
,”
ASME J. Heat Transfer
,
137
(
8
), p.
080912
.10.1115/1.4030476
26.
Manoharan
,
S.
,
Deodhar
,
A. M.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
,
2019
, “
Computational Modeling of Adiabatic Bubble Growth Dynamics From Submerged Capillary-Tube Orifices in Aqueous Solutions of Surfactants
,”
ASME J. Heat Transfer.
,
141
(
5
), p.
052002
.10.1115/1.4042700
27.
Eckmann
,
D. M.
, and
Diamond
,
S. L.
,
2004
, “
Surfactants Attenuate Gas Embolism-Induced Thrombin Production
,”
Anesthesiology
,
100
(
1
), pp.
77
84
.10.1097/00000542-200401000-00015
28.
Eckmann
,
D. M.
,
Armstead
,
S. C.
, and
Mardini
,
F.
,
2005
, “
Surfactant Reduces Platelet-Bubble and Platelet-Platelet Binding Induced by In Vitro Air Embolism
,”
Anesthesiology
,
103
(
6
), pp.
1204
1210
.10.1097/00000542-200512000-00015
29.
Eckmann
,
D. M.
,
Eckmann
,
Y. Y.
, and
Tomczyk
,
N.
,
2014
, “
Dose Response of Surfactants to Attenuate as Embolism Related Platelet Aggregation
,”
Heat Mass Transfer
,
50
(
3
), pp.
323
331
.10.1007/s00231-013-1273-1
30.
Kobayashi
,
S.
,
Crooks
,
S. D.
, and
Eckmann
,
D. M.
,
2011
, “
Microembolism Bubble Contact and Calcium Signaling in Bovine Aortic Endothelial Cells In Vitro
,”
Undersea Hyperbaric Med.
,
38
(
1
), pp.
27
39
.
31.
Sobolewski
,
P.
,
Kandel
,
J.
,
Klinger
,
A. L.
, and
Eckmann
,
D. M.
,
2011
, “
Air Bubble Contact With Endothelial Cells In Vitro Induces Calcium Influx and IP3-Dependent Release of Calcium Stores
,”
Am. J. Physiol.-Cell Physiol.
,
301
(
3
), pp.
C679
C686
.10.1152/ajpcell.00046.2011
32.
Sobolewski
,
P.
,
Kandel
,
J.
, and
Eckmann
,
D. M.
,
2012
, “
Air Bubble Contact With Endothelial Cells Causes a Calcium-Independent Loss in Mitochondrial Membrane Potential
,”
PLoS One
,
7
(
10
), p.
e47254
.10.1371/journal.pone.0047254
33.
Klinger
,
A. L.
,
Pichette
,
B.
,
Sobolewski
,
P.
, and
Eckmann
,
D. M.
,
2011
, “
Mechanotransductional Basis of Endothelial Cell Response to Intravascular Bubble Contact
,”
Integr. Biol.
,
3
(
10
), pp.
1033
1042
.10.1039/c1ib00017a
34.
Klinger
,
A. L.
,
Kandel
,
J.
,
Pichette
,
B.
, and
Eckmann
,
D. M.
,
2014
, “
Perfluorocarbon Inhibition of Bubble Induced Ca2+ Transients in an In-Vitro Model of Vascular as Embolism
,”
Exp. Biol. Med.
,
239
(
1
), pp.
116
122
.10.1177/1535370213506434
35.
Suzuki
,
A.
, and
Eckmann
,
D. M.
,
2003
, “
Embolism Bubble Adhesion Force in Excised Perfused Microvessels
,”
Anesthesiology
,
99
(
2
), pp.
400
408
.10.1097/00000542-200308000-00022
36.
Branger
,
A. B.
, and
Eckmann
,
D. M.
,
1999
, “
Theoretical and Experimental Intravascular as Embolism Absorption Dynamics
,”
J. Appl. Physiol.
,
87
(
4
), pp.
1287
1295
.10.1152/jappl.1999.87.4.1287
37.
Eckmann
,
D. M.
, and
Lomivorotov
,
V. N.
,
2003
, “
Microvascular Gas Embolization Clearance Following Perfluorocarbon Administration
,”
J. Appl. Physiol.
,
94
(
3
), pp.
860
868
.10.1152/japplphysiol.00719.2002
38.
Eckmann
,
D. M.
, and
Armstead
,
S. C.
,
2013
, “
Surfactant Reduction of Cerebral Infarct Size and Behavioral Deficit in a Rat Model of Cerebrovascular Air Embolism
,”
J. Appl. Physiol.
,
115
(
6
), pp.
868
876
.10.1152/japplphysiol.01382.2012
39.
Mukundakrishnan
,
K.
,
Quan
,
S. P.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2007
, “
Numerical Study of Wall Effects on Buoyant Gas-Bubble Rise in a Liquid-Filled Finite Cylinder
,”
Phys. Rev. E
,
76
(
3
), pp.
036308
036315
.10.1103/PhysRevE.76.036308
40.
Mukundakrishnan
,
K.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2008
, “
Drop Motion Through a Carreau-Yasuda Fluid Flowing in a Vertical Tube
,”
19th National & 8th ISHMT-ASME Heat and Mass Transfer Conference, Hyderabad, India, Jan. 3–5
.
41.
Mukundakrishnan
,
K.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2009
, “
Bubble Motion Through a Generalized Power-Law Fluid Flowing in a Vertical Tube
,”
Ann. N. Y. Acad. Sci.
,
1161
(
1
), pp.
256
267
.10.1111/j.1749-6632.2009.04089.x
42.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2008
, “
Finite-Sized Gas Bubble Motion in a Blood Vessel: Non-Newtonian Effects
,”
Phys. Rev. E
,
78
(
3
), pp.
036303
036315
.10.1103/PhysRevE.78.036303
43.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2009
, “
Bubble Motion in a Blood Vessel: Shear Stress Induced Endothelial Cell Injury
,”
ASME J. Biomech. Eng.
,
131
(
7
), p.
074516
.10.1115/1.3153310
44.
Zhang
,
J.
,
Eckmann
,
D. M.
, and
Ayyaswamy
,
P. S.
,
2006
, “
A Front Tracking Method for a Deformable Intravascular Axisymmetric Bubble With a Soluble Surfactant
,”
J. Comp. Phys.
,
214
(
1
), pp.
366
396
.10.1016/j.jcp.2005.09.016
45.
Swaminathan
,
T. N.
,
Ayyaswamy
,
P. S.
,
Mukundakrishnan
,
K.
, and
Eckmann
,
D. M.
,
2010
, “
Effect of a Soluble Surfactant on a Finite Sized Bubble Motion in a Blood Vessel
,”
J. Fluid Mech.
,
642
, pp.
509
539
.10.1017/S0022112009992692
46.
Merrill
,
E. W.
,
Margetts
,
W. G.
,
Cokelet
,
G. R.
, and
Gilliland
,
E. W.
,
1963
, “
The Casson Equation and Rheology of Blood Near Zero Shear
,”
Symposium on Biorheology
,
A.
Copley
, ed.,
Interscience Publisher
,
New York
, pp.
135
143
.
47.
Walawender
,
W. P.
,
Chen
,
T. Y.
, and
Cala
,
D. F.
,
1975
, “
Approximate Casson Fluid Model for Tube Flow of Blood
,”
Biorheology
,
12
(
2
), pp.
111
119
.10.3233/BIR-1975-12202
48.
Swaminathan
,
T. N.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2010
, “
Surfactant Properties Differentially Influence Intravascular as Embolism Mechanics
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3649
3663
.10.1007/s10439-010-0120-5
49.
Mukundakrishnan
,
K.
,
Ayyaswamy
,
P. S.
, and
Eckmann
,
D. M.
,
2012
, “
Computational Simulation of Hematocrit Effects on Arterial Embolism Dynamics
,”
Aviat. Space Env. Med.
,
83
(
2
), pp.
92
101
.10.3357/ASEM.3085.2012
50.
Edwards
,
D. A.
,
Brenner
,
H.
, and
Wasan
,
D. T.
,
1991
,
Interfacial Transport Processes and Rheology
,
Butterworth-Heinemann
,
Boston, MA
.
51.
Stone
,
H. A.
, and
Leal
,
L. G.
,
1990
, “
The Effects of Surfactants on Drop Deformation and Breakup
,”
J. Fluid. Mech.
,
220
, pp.
161
186
.10.1017/S0022112090003226
52.
Rodrigue
,
D.
,
De Kee
,
D.
, and
Fong
,
C. F. C. M.
,
1999
, “
The Slow Motion of a Single as Bubble in a Non-Newtonian Fluid Containing Surfactants
,”
J. Non-Newtonian Fluid Mech.
,
86
(
1–2
), pp.
211
227
.10.1016/S0377-0257(98)00209-2
You do not currently have access to this content.