Abstract

This study is part of a broader study on a novel method for harvesting algae by evaporation, and it investigated the feasibility of heating algal biomass using low-grade waste heat in a heat exchanger. Computational fluid dynamic (CFD) analysis was performed with ansysfluent, and the results were verified with experiments. The results of CFD analysis showed the overall heat transfer coefficient increased by 4, 13, and 100% as inlet gas temperature increased from 150 to 245 °C, liquid mass flow rate increased from 1.82 to 9.1 g/s, and gas mass flow increased from 2.2 to 13.2 g/s, respectively. It was also observed the overall heat transfer coefficient was not significantly affected with variations of properties of the liquid (thermal conductivity, density, and viscosity), thermal conductivity of the tube wall, and thickness of the tube banks, but it was sensitive to thermal conductivity of the gas. The experimental data were analyzed with logarithmic mean temperature difference (LMTD), number of transfer units (NTU), and Nusselt number correlation methods. There was an excellent agreement between the overall heat transfer coefficient calculated with the LMTD and NTU methods. The coefficients calculated with the LMTD method and Nusselt number correlation exhibited slight variations. This is likely because the LMTD is a theoretical method covering all experimental conditions and material properties, but Nusselt number correlation is an empirical approach based on correlations. The overall heat transfer coefficient calculated by CFD was slightly overestimated because the CFD analysis assumed complete insulation.

References

References
1.
Mata
,
T. M.
,
Martins
,
A. A.
, and
Caetano
,
N. S.
,
2010
, “
Microalgae for Biodiesel Production and Other Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
217
232
.10.1016/j.rser.2009.07.020
2.
Borowitzka
,
M. A.
, and
Moheimani
,
N. R.
,
2013
, “
Species and Strain Selection
,”
Algae for Biofuels and Energy
,
Springer
,
New York
, pp.
78
89
.
3.
Singh
,
A.
,
Nigam
,
P. S.
, and
Murphy
,
J. D.
,
2011
, “
Renewable Fuels From Algae: An Answer to Debatable Land-Based Fuels
,”
Bioresour. Technol.
,
102
(
1
), pp.
10
16
.10.1016/j.biortech.2010.06.032
4.
Wang
,
B.
,
Li
,
Y.
,
Wu
,
N.
, and
Lan
,
C.
,
2008
, “
CO2 Bio-Mitigation Using Microalgae
,”
Appl. Microbiol. Biotechnol.
,
79
(
5
), pp.
707
718
.10.1007/s00253-008-1518-y
5.
Banerjee
,
A.
,
Sharma
,
R.
,
Chisti
,
Y.
, and
Banerjee
,
U. C.
,
2002
, “
Botryococcus Braunii: A Renewable Source of Hydrocarbons and Other Chemicals
,”
Crit. Rev. Biotechnol.
,
22
(
3
), pp.
245
279
.10.1080/07388550290789513
6.
Chisti
,
Y.
,
2007
, “
Biodiesel From Microalgae
,”
Biotechnol. Adv.
,
25
(
3
), pp.
294
306
.10.1016/j.biotechadv.2007.02.001
7.
Clark
,
J. H.
,
Deswarte
,
F. E. I.
, and
Farmer
,
T. J.
,
2009
, “
The Integration of Green Chemistry Into Future Biorefineries
,”
Biofuels, Bioprod. Biorefin.
,
3
(
1
), pp.
72
90
.10.1002/bbb.119
8.
Lam
,
M. K.
,
Khoo
,
C. G.
, and
Lee
,
K. T.
,
2019
, “
Scale-Up and Commercialization of Algal Cultivation and Biofuels Production
,”
Biofuels from Algae
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
475
506
.
9.
Singh
,
G.
, and
Patidar
,
S.
,
2018
, “
Microalgae Harvesting Techniques: A Review
,”
J. Environ. Manag.
,
217
, pp.
499
508
.10.1016/j.jenvman.2018.04.010
10.
Greenwell
,
H. C.
,
Laurens
,
L. M. L.
,
Shields
,
R. J.
,
Lovitt
,
R. W.
, and
Flynn
,
K. J.
,
2010
, “
Placing Microalgae on the Biofuels Priority List: A Review of the Technological Challenges
,”
J. R. Soc. Interface
,
7
(
46
), pp.
703
726
.10.1098/rsif.2009.0322
11.
Narendra
,
M. V.
,
Shakti
,
M.
,
Amitesh
,
S.
, and
Bhartendu
,
N. M.
,
2010
, “
Prospective of Biodiesel Production Utilizing Microalgae as the Cell Factories: A Comprehensive Discussion
,”
Afr. J. Biotechnol.
,
9
(
10
), pp.
1402
1411
.10.5897/AJBx09.071
12.
Amer
,
L.
,
Adhikari
,
B.
, and
Pellegrino
,
J.
,
2011
, “
Technoeconomic Analysis of Five Microalgae-to-Biofuels Processes of Varying Complexity
,”
Bioresour. Technol.
,
102
(
20
), pp.
9350
9359
.10.1016/j.biortech.2011.08.010
13.
Slade
,
R.
, and
Bauen
,
A.
,
2013
, “
Micro-Algae Cultivation for Biofuels: Cost, Energy Balance, Environmental Impacts and Future Prospects
,”
Biomass Bioenergy
,
53
(
Suppl. C
), pp.
29
38
.10.1016/j.biombioe.2012.12.019
14.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
268
289
.10.1016/j.tsep.2018.04.017
15.
Goodarzi
,
S.
,
Javaran
,
E. J.
,
Rahnama
,
M.
, and
Ahmadi
,
M.
,
2019
, “
Techno-Economic Evaluation of a Multi Effect Distillation System Driven by Low-Temperature Waste Heat From Exhaust Flue Gases
,”
Desalination
,
460
, pp.
64
80
.10.1016/j.desal.2019.03.005
16.
Teke
,
I.
,
Ağra
,
Ö.
,
Atayılmaz
,
ŞÖ.
, and
Demir
,
H.
,
2010
, “
Determining the Best Type of Heat Exchangers for Heat Recovery
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
577
583
.10.1016/j.applthermaleng.2009.10.021
17.
Xue
,
Y.
,
Du
,
X.
,
Ge
,
Z.
, and
Yang
,
L.
,
2018
, “
Study on Multi-Effect Distillation of Seawater With Low-Grade Heat Utilization of Thermal Power Generating Unit
,”
Appl. Therm. Eng.
,
141
, pp.
589
599
.10.1016/j.applthermaleng.2018.05.129
18.
Rahimi
,
B.
,
May
,
J.
,
Christ
,
A.
,
Regenauer-Lieb
,
K.
, and
Chua
,
H. T.
,
2015
, “
Thermo-Economic Analysis of Two Novel Low Grade Sensible Heat Driven Desalination Processes
,”
Desalination
,
365
, pp.
316
328
.10.1016/j.desal.2015.03.008
19.
Ansys
,
2020
, “
Ansys: Overview of Using the Solver
,”
Canonsburg, PA
, Release 12.0, January 29, 2009, accessed Aug. 26, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node776.htm
20.
Ansys
,
2020
, “
Ansys: Basic Fluid Flow
,”
Canonsburg, PA
, Release 12.0, January 23, 2009, accessed Aug. 26, https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node9.htm
21.
Frei
,
W.
,
2020
, “
Which Turbulence Model Should I Choose for my CFD Application?
,”
Los Altos, CA
, July 6, 2017, accessed, August 26, https://www.comsol.com/blogs/which-turbulence-model-should-choose-cfd-application/
22.
Mills
,
A. F.
, and
Coimbra
,
C. F. M.
,
2016
,
Heat Transfer
,
Temporal Publishing, LLC
,
San Diego, CA
.
23.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Ganji
,
D. D.
, and
Sedighi
,
K.
,
2013
, “
Experimental Analysis of Heat Transfer Enhancement in Shell and Helical Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
644
652
.10.1016/j.applthermaleng.2012.10.008
24.
Fettaka
,
S.
,
Thibault
,
J.
, and
Gupta
,
Y.
,
2013
, “
Design of Shell-and-Tube Heat Exchangers Using Multiobjective Optimization
,”
Int. J. Heat Mass Transfer
,
60
, pp.
343
354
.10.1016/j.ijheatmasstransfer.2012.12.047
25.
Amini
,
M.
, and
Bazargan
,
M.
,
2014
, “
Two Objective Optimization in Shell-and-Tube Heat Exchangers Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
278
285
.10.1016/j.applthermaleng.2013.11.034
26.
Xie
,
Y.
,
Xu
,
Z.
, and
Mei
,
N.
,
2016
, “
Evaluation of the Effectiveness-NTU Method for Countercurrent Humidifier
,”
Appl. Therm. Eng.
,
99
, pp.
1270
1276
.10.1016/j.applthermaleng.2016.01.112
27.
Haider
,
Z.
,
Abbas
,
A.
, Jr.
,
Ahmad
,
J.
,
Ikram
,
H.
,
Khan
,
S. A.
, and
Mehmood
,
R.
,
2018
, “
Empirical Nusselt Number Correlation for Single Phase Flow Through Corrugated Plate Heat Exchanger
,”
Proceedings of ASTFE Digital Library
,
Begel House
,
Fort Lauderdale, FL
, Mar. 4–7, pp.
1477
1487
.
28.
Churchill
,
S.
, and
Bernstein
,
M.
,
1977
, “
A Correlating Equation for Forced Convection From Gases and Liquids to a Circular Cylinder in Crossflow
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
300
306
.10.1115/1.3450685
29.
Bevan
,
A.
,
2013
,
Statistical Data Analysis for the Physical Sciences
, Chap. 6,
Cambridge University Press
,
Cambridge, UK
.
30.
Dang
,
T.
,
Teng
,
J. T.
, and
Chu
,
J. C.
,
2012
, “
Effect of Flow Arrangement on the Heat Transfer Behaviors of a Microchannel Heat Exchanger
,”
Proceedings World Congress on Engineering
,
International Association of Engineers
,
London, UK
, July 4–6, pp.
2209
2214
.
31.
You
,
Y.
,
Fan
,
A.
,
Huang
,
S.
, and
Liu
,
W.
,
2012
, “
Numerical Modeling and Experimental Validation of Heat Transfer and Flow Resistance on the Shell Side of a Shell-and-Tube Heat Exchanger With Flower Baffles
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7561
7569
.10.1016/j.ijheatmasstransfer.2012.07.058
32.
Sabharwall
,
P.
,
Utgikar
,
V.
, and
Gunnerson
,
F.
,
2009
, “
Effect of Mass Flow Rate on the Convective Heat Transfer Coefficient: Analysis for Constant Velocity and Constant Area Case
,”
Nucl. Technol.
,
166
(
2
), pp.
197
200
.10.13182/NT09-A7406
33.
Burger
,
N.
,
Laachachi
,
A.
,
Ferriol
,
M.
,
Lutz
,
M.
,
Toniazzo
,
V.
, and
Ruch
,
D.
,
2016
, “
Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory
,”
Prog. Polym. Sci.
,
61
, pp.
1
28
.10.1016/j.progpolymsci.2016.05.001
34.
Chen
,
J. C.
,
1998
,
Heat Transfer in Fluidized Beds
,
William Andrew Publishing
,
New York
.
35.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2016
, “
Inverse Boundary Design Solution in a Combined Radiating-Free Convecting Furnace Filled With Participating Medium Containing Specularly Reflecting Walls
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
69
76
.10.1016/j.icheatmasstransfer.2016.04.029
36.
Pal
,
E.
,
Kumar
,
I.
,
Joshi
,
J. B.
, and
Maheshwari
,
N. K.
,
2016
, “
CFD Simulations of Shell-Side Flow in a Shell-and-Tube Type Heat Exchanger With and Without Baffles
,”
Chem. Eng. Sci.
,
143
, pp.
314
340
.10.1016/j.ces.2016.01.011
37.
Yang
,
J.
,
Ma
,
L.
,
Bock
,
J.
,
Jacobi
,
A. M.
, and
Liu
,
W.
,
2014
, “
A Comparison of Four Numerical Modeling Approaches for Enhanced Shell-and-Tube Heat Exchangers With Experimental Validation
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
369
383
.10.1016/j.applthermaleng.2014.01.035
38.
Kim
,
N. H.
,
2016
, “
Condensation Heat Transfer and Pressure Drop of R-410A in a 7.0 mm OD Microfin Tube at Low Mass Fluxes
,”
Heat Mass Transfer
,
52
(
12
), pp.
2833
2847
.10.1007/s00231-016-1789-2
You do not currently have access to this content.