Abstract

Phase change materials (PCMs) are effective at storing thermal energy and are attractive for use in electronics to smooth temperature peaks during periods of high demand; however, the use of PCMs has been somewhat limited due to the poor thermal properties of the materials. Here, we propose a design for a tunable composite PCM heat sink for passive thermal management in electronic systems and develop an improved test platform to directly compare performance between different designs and PCMs. The composite design leverages high conductivity pathways, which are machined into aluminum heat sinks, and back-filled with PCMs. Two package sizes are considered with several internal fin structures. All designs are evaluated using a test platform with realistic power profiles, controlled interfacial loading, and in situ temperature measurement. The composite PCM heat sinks are benchmarked against solid aluminum packages of the same size. This study focuses on three commercially available PCMs. Performance is evaluated based on (1) the time it takes the test heater chip below each composite PCM package to reach the cut-off temperature of 95 °C and (2) the period of a full melt-regeneration cycle. A range of heat fluxes are considered in this study spanning 6.8–14.5 W cm−2. The isokite design with PlusICE S70 extends the time to reach 95 °C by 36.2% when compared to the solid package, while weighing 17.3% less, making it advantageous for mobile devices.

References

References
1.
Hoover
,
M. J.
,
Grodzka
,
P. G.
, and
O'Neill
,
M. J.
,
1971
, “
Space Thermal Control Development
,”
NASA Marshal Space Flight Center
,
Huntsville, AL
, Report No. LMSC-HRES D225500.
2.
Hale
,
D. V.
,
Hoover
,
M. J.
, and
O'Neill
,
M. J.
,
1971
, “
Phase Change Materials Handbook
,”
NASA Marshal Space Flight Center
,
Huntsville, AL
, Report No. NASA CR-51363.
3.
Humphries
,
W. R.
, and
Griggs
,
E. I.
,
1977
, “
A Design Handbook for Phase Change Thermal Control and Energy Storage Devices
,”
NASA Marshall Space Flight Center
,
Huntsville, AL
, NASA-TP-1074.
4.
Busby
,
M. S.
, and
Mertesdorf
,
S. J.
,
1987
, “
The Benefit of Phase Change Thermal Storage for Spacecraft Thermal Management
,”
AIAA Paper No. 87-1482
.10.2514/6.1987-1482
5.
Dubovsky
,
V.
,
Barzilay
,
G.
,
Granot
,
G.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2009
, “
Study of PCM-Based Pin-Fin Heat Sinks
,”
ASME HT2009-88276.
10.1115/HT2009-88276
6.
Baby
,
R.
, and
Balaji
,
C.
,
2012
, “
Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling
,”
Int. J. Heat Mass Transfer
,
55
(
5–6
), pp.
1642
1649
.10.1016/j.ijheatmasstransfer.2011.11.020
7.
Baby
,
R.
, and
Balaji
,
C.
,
2013
, “
Thermal Optimization of PCM Based Pin Fin Heat Sinks: An Experimental Study
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
65
77
.10.1016/j.applthermaleng.2012.10.056
8.
Saha
,
S. K.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2008
, “
Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials
,”
ASME J. Heat Transfer
,
130
(
3
), p.
034505
.10.1115/1.2804948
9.
Krishnan
,
S.
,
Garimella
,
S. V.
, and
Kang
,
S. S.
,
2005
, “
A Novel Hybrid Heat Sink Using Phase Change Materials for Transient Thermal Management of Electronics
,”
IEEE Trans. Compon. Packaging Technol.
,
28
(
2
), pp.
281
289
.10.1109/TCAPT.2005.848534
10.
Bentilla
,
E. W.
,
Karre
,
L. E.
, and
Sterrett
,
R. F.
,
1966
, “
Research and Development Study on Thermal Control by Use of Fusible Materials: Final Report
,”
NASA
,
Hawthorne, CA
, Report No. NASA-CR-75041.
11.
Mahmoud
,
S.
,
Tang
,
A.
,
Toh
,
C.
,
Al-Dadah
,
R.
, and
Soo
,
S. L.
,
2013
, “
Experimental Investigation of Inserts Configurations and PCM Type on the Thermal Performance of PCM Based Heat Sinks
,”
Appl. Energy
,
112
, pp.
1349
1356
.10.1016/j.apenergy.2013.04.059
12.
Ur Rehman
,
T.
,
Ali
,
H. M.
,
Janjua
,
M. M.
,
Sajjad
,
U.
, and
Yan
,
W.-M.
,
2019
, “
A Critical Review on Heat Transfer Augmentation of Phase Change Materials Embedded With Porous Materials/Foams
,”
Int. J. Heat Mass Transfer
,
135
, pp.
649
673
.10.1016/j.ijheatmasstransfer.2019.02.001
13.
Fok
,
S.
,
Shen
,
W.
, and
Tan
,
F.
,
2010
, “
Cooling of Portable Hand-Held Electronic Devices Using Phase Change Materials in Finned Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(
1
), pp.
109
117
.10.1016/j.ijthermalsci.2009.06.011
14.
Akhilesh
,
R.
,
Narasimhan
,
A.
, and
Balaji
,
C.
,
2005
, “
Method to Improve Geometry for Heat Transfer Enhancement in PCM Composite Heat Sinks
,”
Int. J. Heat Mass Transfer
,
48
(
13
), pp.
2759
2770
.10.1016/j.ijheatmasstransfer.2005.01.032
15.
Wang
,
X.-Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2008
, “
A Parametric Study of Phase Change Material (PCM)-Based Heat Sinks
,”
Int. J. Therm. Sci.
,
47
(
8
), pp.
1055
1068
.10.1016/j.ijthermalsci.2007.07.016
16.
Balaji
,
C.
,
Mungara
,
P.
, and
Sharma
,
P.
,
2011
, “
Optimization of Size and Shape of Composite Heat Sinks With Phase Change Materials
,”
Heat Mass Transfer
,
47
(
5
), pp.
597
608
.10.1007/s00231-010-0752-x
17.
Gharbi
,
S.
,
Harmand
,
S.
, and
Jabrallah
,
S. B.
,
2018
, “
Parametric Study on Thermal Performance of PCM Heat Sink Used for Electronic Cooling
,”
Green Energy and Technology
,
Springer
,
Cham, Switzerland
, pp.
243
256
.
18.
Levin
,
P. P.
,
Shitzer
,
A.
, and
Hetsroni
,
G.
,
2013
, “
Numerical Optimization of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
, 61, pp.
638
645
.10.1016/j.ijheatmasstransfer.2013.01.056
19.
Gharebaghi
,
M.
, and
Sezai
,
I.
,
2007
, “
Enhancement of Heat Transfer in Latent Heat Storage Modules With Internal Fins
,”
Numer. Heat Transfer, Part A: Appl.
,
53
(
7
), pp.
749
765
.10.1080/10407780701715786
20.
Amritha
,
E.
,
Srikanth
,
R.
, and
Balaji
,
C.
,
2018
, “
Experimental Investigation of the Thermal Performance of Matrix Plate Fin Heat Sink With Multiple Phase Change Materials
,”
International Heat Transfer Conference Digital Library
, Beijing, China, pp.
5033
5040
.10.1615/IHTC16.hte.023145
21.
Shamberger
,
P. J.
,
2016
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Transfer
,
138
(
2
), p.
024502
.10.1115/1.4031252
22.
Shamberger
,
P. J.
, and
Fisher
,
T. S.
,
2018
, “
Cooling Power and Characteristic Times of Composite Heatsinks and Insulants
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2017.10.085
23.
Entropy Solutions
,
2020
, “
Puretemp 42 Technical Information
,”
Entropy Solutions LLC
,
Minneapolis, MN
.
24.
Entropy Solutions
,
2020
, “
Puretemp 68 Technical Information
,”
Entropy Solutions, LLC
,
Minneapolis, MN
.
25.
PCM Products
,
2020
, “
Plusice Phase Change Materials
,”
Phase Change Materials Products, Ltd
.,
Minneapolis, MN
.
26.
Ibrahim
,
N. I.
,
Al-Sulaiman
,
F. A.
,
Rahman
,
S.
,
Yilbas
,
B. S.
, and
Sahin
,
A. Z.
,
2017
, “
Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
26
50
.10.1016/j.rser.2017.01.169
27.
Dutil
,
Y.
,
Rousse
,
D. R.
,
Salah
,
N. B.
,
Lassue
,
S.
, and
Zalewski
,
L.
,
2011
, “
A Review on Phase-Change Materials: Mathematical Modeling and Simulations
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
112
130
.10.1016/j.rser.2010.06.011
28.
Kozak
,
Y.
,
Abramzon
,
B.
, and
Ziskind
,
G.
,
2013
, “
Experimental and Numerical Investigation of a Hybrid PCM-Air Heat Sink
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
142
152
.10.1016/j.applthermaleng.2013.05.021
29.
Merzlyakov
,
M.
, and
Schick
,
C.
,
2001
, “
Thermal Conductivity From Dynamic Response of DSC
,”
Thermochim. Acta
,
377
(
1–2
), pp.
183
191
.10.1016/S0040-6031(01)00553-6
30.
Wang
,
J.
,
Feng
,
L.
,
Ottino
,
J. M.
, and
Lueptow
,
R.
,
2009
, “
Inertial Effects on Chaotic Advection and Mixing in a 2D Cavity Flow
,”
Ind. Eng. Chem. Res.
,
48
(
5
), pp.
2436
2442
.10.1021/ie800404d
31.
Motahar
,
S.
,
Nikkam
,
N.
,
Alemrajabi
,
A. A.
,
Khodabandeh
,
R.
,
Toprak
,
M. S.
, and
Muhammed
,
M.
,
2014
, “
Experimental Investigation on Thermal and Rheological Properties of n-Octadecane With Dispersed TiO2 Nanoparticles
,”
Int. Commun. Heat Mass Transfer
,
59
, pp.
68
74
.10.1016/j.icheatmasstransfer.2014.10.016
32.
Wang
,
J.
,
Xie
,
H.
, and
Xin
,
Z.
,
2008
, “
Thermal Properties of Heat Storage Composites Containing Multiwalled Carbon Nanotubes
,”
J. Appl. Phys.
,
104
(
11
), p.
113537
.10.1063/1.3041495
33.
Wang
,
J.
,
Xie
,
H.
,
Xin
,
Z.
,
Li
,
Y.
, and
Chen
,
L.
,
2010
, “
Enhancing Thermal Conductivity of Palmitic Acid Based Phase Change Materials With Carbon Nanotubes as Fillers
,”
Sol. Energy
,
84
(
2
), pp.
339
344
.10.1016/j.solener.2009.12.004
34.
Choi
,
D. H.
,
Lee
,
J.
,
Hong
,
H.
, and
Kang
,
Y. T.
,
2014
, “
Thermal Conductivity and Heat Transfer Performance Enhancement of Phase Change Materials (PCM) Containing Carbon Additives for Heat Storage Application
,”
Int. J. Refrig.
,
42
, pp.
112
120
.10.1016/j.ijrefrig.2014.02.004
35.
Frusteri
,
F.
,
Leonardi
,
V.
,
Vasta
,
S.
, and
Restuccia
,
G.
,
2005
, “
Thermal Conductivity Measurement of a PCM Based Storage System Containing Carbon Fibers
,”
Appl. Therm. Eng.
,
25
(
11–12
), pp.
1623
1633
.10.1016/j.applthermaleng.2004.10.007
36.
Frusteri
,
F.
,
Leonardi
,
V.
, and
Maggio
,
G.
,
2006
, “
Numerical Approach to Describe the Phase Change of an Inorganic PCM Containing Carbon Fibres
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1883
1892
.10.1016/j.applthermaleng.2006.01.018
37.
Karaipekli
,
A.
,
Sar
,
I. A.
, and
Kaygusuz
,
K.
,
2007
, “
Thermal Conductivity Improvement of Stearic Acid Using Expanded Graphite and Carbon Fiber for Energy Storage Applications
,”
Renewable Energy
,
32
(
13
), pp.
2201
2210
.10.1016/j.renene.2006.11.011
38.
Wang
,
Y.-H.
, and
Yang
,
Y.-T.
,
2011
, “
Three-Dimensional Transient Cooling Simulations of a Portable Electronic Device Using PCM (Phase Change Materials) in Multi-Fin Heat Sink
,”
Energy
,
36
(
8
), pp.
5214
5224
.10.1016/j.energy.2011.06.023
39.
Ganatra
,
Y.
, and
Marconnet
,
A.
,
2015
, “
Passive Thermal Management Using Phase Change Materials: Experimental Evaluation of Thermal Resistances
,”
ASME Paper No. IPACK2015-48499.
10.1115/IPACK2015-48499
40.
Ganatra
,
Y.
,
Ruiz
,
J.
,
Howarter
,
J. A.
, and
Marconnet
,
A.
,
2018
, “
Experimental Investigation of Phase Change Materials for Thermal Management of Handheld Devices
,”
Int. J. Therm. Sci.
,
129
, pp.
358
364
.10.1016/j.ijthermalsci.2018.03.012
You do not currently have access to this content.