Abstract

The intent of the current research work is to emphasize the computational modeling of forced convection heat dissipation in the presence of high porosity and thermal conductivity metallic foam in a horizontal pipe for different regimes of the fluid flow for a range of Reynolds number. A two-dimensional physical domain is considered in which Darcy extended Forchheimer (DEF) model is adopted in the aluminum metallic foam to predict the features of fluid flow and local thermal nonequilibrium (LTNE) model is employed for the analysis of heat transfer in a horizontal pipe for different flow regimes. The numerical results are initially matched with experimental and analytical results for the purpose of validation. The average Nusselt number for fully filled foam is found to be higher compared to other filling rate of metallic foams and the clear pipe at the cost of pressure drop. As an important finding, it has been observed that the laminar and transition flow gives higher heat transfer enhancement ratio and thermal performance factor compared to turbulent flow. This work resembles numerous industrial applications such as solar collectors, heat exchangers, electronic cooling, and microporous heat exchangers. The novelty of the work is the selection of suitable flow and thermal models in order to clearly assimilate the flow and heat transfer in metallic foam. The presence of aluminum metal foam is highlighted for the augmentation of heat dissipation in terms of PPI and porosity. The parametric study proposed in this work surrogates the complexity and cost involved in developing an expensive experimental setup.

References

1.
Xu
,
H. J.
,
Qu
,
Z. G.
,
Lu
,
T. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Modeling of Forced Convection in a Parallel-Plate Channel Partially Filled With Metallic Foams
,”
ASME J. Heat Transfer
,
133
(
9
), p.
092603
.10.1115/1.4004209
2.
Tsolas
,
N.
, and
Chandra
,
S.
,
2012
, “
Forced Convection Heat Transfer in Spray Formed Copper and Nickel Foam Heat Exchanger Tubes
,”
ASME J. Heat Transfer
,
134
(
6
), p.
062602
.10.1115/1.4006015
3.
Odabaee
,
M.
,
De Paepe
,
M.
,
De Jaeger
,
P.
,
T'Joen
,
C.
, and
Hooman
,
K.
,
2013
, “
Particle Deposition Effects on Heat Transfer From a Metal Foam-Wrapped Tube Bundle
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
1
), pp.
74
87
.10.1108/09615531311289114
4.
Xu
,
H. J.
,
Gong
,
L.
,
Zhao
,
C. Y.
,
Yang
,
Y. H.
, and
Xu
,
Z. G.
,
2015
, “
Analytical Considerations of Local Thermal Non-Equilibrium Conditions for Thermal Transport in Metal Foams
,”
Int. J. Therm. Sci.
,
95
, pp.
73
87
.10.1016/j.ijthermalsci.2015.04.007
5.
Nazari
,
M.
,
Ashouri
,
M.
,
Kayhani
,
M. H.
, and
Tamayol
,
A.
,
2015
, “
Experimental Study of Convective Heat Transfer of a Nanofluid Through a Pipe Filled With Metal Foam
,”
Int. J. Therm. Sci.
,
88
, pp.
33
39
.10.1016/j.ijthermalsci.2014.08.013
6.
Lu
,
W.
,
Zhang
,
T.
, and
Yang
,
M.
,
2016
, “
Analytical Solution of Forced Convective Heat Transfer in Parallel-Plate Channel Partially Filled With Metallic Foams
,”
Int. J. Heat Mass Transfer
,
100
, pp.
718
727
.10.1016/j.ijheatmasstransfer.2016.04.047
7.
Celik, H., Mobedi, M., Manca, O., and Ozkol, U.
,
2017
, “
A Pore Scale Analysis for Determination of Interfacial Convective Heat Transfer for Thin Periodic Porous Media Under Mixed Convection
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
, pp.
2775
2798
.10.1108/HFF-01-2017-0036
8.
Li
,
Y.
,
Wang
,
S.
,
Zhao
,
Y.
, and
Lu
,
C.
,
2017
, “
Experimental Study on the Influence of Porous Foam Metal Filled in the Core Flow Region on the Performance of Thermoelectric Generators
,”
Appl. Energy
,
207
, pp.
634
642
.10.1016/j.apenergy.2017.06.089
9.
Sheikhnejad
,
Y.
,
Hosseini
,
R.
, and
Saffar Avval
,
M.
,
2017
, “
Experimental Study on Heat Transfer Enhancement of Laminar Ferrofluid Flow in Horizontal Tube Partially Filled Porous Media Under Fixed Parallel Magnet Bars
,”
J. Magn. Magn. Mater.
,
424
, pp.
16
25
.10.1016/j.jmmm.2016.09.098
10.
Bamorovat Abadi
,
G.
, and
Kim
,
K. C.
,
2017
, “
Experimental Heat Transfer and Pressure Drop in a Metal-Foam-Filled Tube Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
42
49
.10.1016/j.expthermflusci.2016.10.031
11.
Sabet
,
S.
,
Mobedi
,
M.
,
Barisik
,
M.
, and
Nakayama
,
A.
,
2018
, “
Numerical Determination of Interfacial Heat Transfer Coefficient for an Aligned Dual Scale Porous Medium
,”
Int. J. Numer. Methods Heat Fluid Flow
,
28
(
11
), pp.
2716
2733
.10.1108/HFF-03-2018-0097
12.
Barnoon
,
P.
, and
Toghraie
,
D.
,
2018
, “
Numerical Investigation of Laminar Flow and Heat Transfer of Non-Newtonian Nanofluid Within a Porous Medium
,”
Powder Technol.
,
325
, pp.
78
91
.10.1016/j.powtec.2017.10.040
13.
Bağcı
,
Ö.
, and
Dukhan
,
N.
,
2018
, “
Impact of Pore Density on Oscillating Liquid Flow in Metal Foam
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
246
253
.10.1016/j.expthermflusci.2018.04.020
14.
Li
,
Y.
,
Wang
,
S.
, and
Zhao
,
Y.
,
2018
, “
Experimental Study on Heat Transfer Enhancement of Gas Tube Partially Filled With Metal Foam
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
408
416
.10.1016/j.expthermflusci.2018.05.002
15.
Li
,
Z.
,
Xia
,
X.
,
Li
,
X.
, and
Sun
,
C.
,
2018
, “
Discrete vs. Continuum-Scale Simulation of Coupled Radiation and Convection Inside Rectangular Channel Filled With Metal Foam
,”
Int. J. Therm. Sci.
,
132
, pp.
219
233
.10.1016/j.ijthermalsci.2018.06.010
16.
Xu
,
Z. G.
, and
Gong
,
Q.
,
2018
, “
Numerical Investigation on Forced Convection of Tubes Partially Filled With Composite Metal Foams Under Local Thermal Non-Equilibrium Condition
,”
Int. J. Therm. Sci.
,
133
, pp.
1
12
.10.1016/j.ijthermalsci.2018.06.014
17.
Baragh
,
S.
,
Shokouhmand
,
H.
,
Ajarostaghi
,
S. S. M.
, and
Nikian
,
M.
,
2018
, “
An Experimental Investigation on Forced Convection Heat Transfer of Single-Phase Flow in a Channel With Different Arrangements of Porous Media
,”
Int. J. Therm. Sci.
,
134
, pp.
370
379
.10.1016/j.ijthermalsci.2018.04.030
18.
Arasteh
,
H.
,
Salimpour
,
M. R.
, and
Tavakoli
,
M. R.
,
2018
, “
Optimal Distribution of Metal Foam Inserts in a Double-Pipe Heat Exchanger
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
4
), pp.
1322
3142
.10.1108/HFF-04-2018-016210.1108/HFF-04-2018-0162
19.
Renu
,
K. M.
, and
Kumar
,
A.
,
2020
, “
Effect of Radiation on Hydromagnetic Mixed Convective Flow in a Vertical Channel Filled With Porous Media: A Thermal Nonequilibrium Approach
,”
ASME J. Heat Transfer
,
142
(
4
), pp.
1
16
.10.1115/1.4045889
20.
Dilawar
,
M.
,
Niazi
,
K.
,
Ship
,
A.
,
Xu
,
H.
, and
Ship
,
A.
,
2020
, “
Unsteady Laminar Flow in a Saturated Micro-Channel in the Presence of EDL Effects
,”
ASME J. Heat Transfer
, 142(6), p. 064501.10.115/1.4046534
21.
Shi
,
J.
,
Zheng
,
G.
,
Chen
,
Z.
, and
Dang
,
C.
,
2019
, “
Experimental Study of Flow Condensation Heat Transfer in Tubes Partially Filled With Hydrophobic Annular Metal Foam
,”
Int. J. Heat Mass Transfer
,
136
, pp.
1265
1272
.10.1016/j.ijheatmasstransfer.2019.03.039
22.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2015
, “
Heat Transfer and Pressure Drop Characteristics of Finned Metal Foam Heat Sinks Under Uniform Impinging Flow
,”
ASME J. Heat Transfer
,
137
, pp.
1
12
.10.1115/1.4029722
23.
Xu
,
H. J.
,
Zhao
,
C. Y.
, and
Xu
,
Z. G.
,
2016
, “
Analytical Considerations of Slip Flow and Heat Transfer Through Microfoams in Mini/Microchannels With Asymmetric Wall Heat Fluxes
,”
Appl. Therm. Eng.
,
93
, pp.
15
26
.10.1016/j.applthermaleng.2015.09.068
24.
Xu
,
H.
,
Zhao
,
C.
, and
Vafai
,
K.
,
2018
, “
European Journal of Mechanics/B Fluids Analysis of Double Slip Model for a Partially Filled Porous Microchannel—An Exact Solution
,”
Eur. J. Mech.-B
,
68
, pp.
1
9
.10.1016/j.euromechflu.2017.10.009
25.
Xu
,
H.
,
Zhao
,
C.
, and
Vafai
,
K.
,
2017
, “
Analytical Study of Flow and Heat Transfer in an Annular Porous Medium Subject to Asymmetrical Heat Fluxes
,”
Heat Mass Transfer
,
53
(
8
), pp.
2663
2676
.10.1007/s00231-017-2011-x
26.
Pavel
,
B. I.
, and
Mohamad
,
A. A.
,
2004
, “
An Experimental and Numerical Study on Heat Transfer Enhancement for Gas Heat Exchangers Fitted With Porous Media
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
4939
4952
.10.1016/j.ijheatmasstransfer.2004.06.014
27.
Sunden
,
B.
,
2012
,
Introduction to Heat Transfer
,
WIT Press
,
Ashurst, UK
.
28.
Mohammed
,
H. A.
,
Abed
,
A. M.
, and
Wahid
,
M. A.
,
2013
, “
The Effects of Geometrical Parameters of a Corrugated Channel With in Out-of-Phase Arrangement
,”
Int. Commun. Heat Mass Transfer
,
40
(
1
), pp.
47
57
.10.1016/j.icheatmasstransfer.2012.10.022
29.
Mahmoudi
,
Y.
, and
Karimi
,
N.
,
2014
, “
International Journal of Heat and Mass Transfer Numerical Investigation of Heat Transfer Enhancement in a Pipe Partially Filled With a Porous Material Under Local Thermal Non-Equilibrium Condition
,”
Int. J. J Heat Mass Transfer
,
68
, pp.
161
173
.10.1016/j.ijheatmasstransfer.2013.09.020
30.
ANSYS Fluent
,
2017
, “
ANSYS V R [ANSYS Fluent], 15.0, Help System, User's Guide/Theory Guide
,”
ANSYS
,
Canonsburg, PA
.
31.
Walters
,
D. K.
,
2019
, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier–Stokes Simulations of Transitional Flow
,”
ASME J. Fluid Eng.
,
130
(
12
), p.
121401
.10.1115/1.2979230
32.
Kotresha
,
B.
, and
Gnanasekaran
,
N.
,
2019
, “
Numerical Simulations of Fluid Flow and Heat Transfer Through Aluminum and Copper Metal Foam Heat Exchanger—A Comparative Study Numerical Simulations of Fluid Flow and Heat Transfer Through Aluminum
,”
Heat Transfer Eng.
,
41
(6–7), pp.
637
649
.10.1080/01457632.2018.1546969
33.
Lin
,
W.
,
Xie
,
G.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2016
, “
Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model Comparison and Analysis of Heat Transfer in Aluminum Foam Using Local Thermal Equilibrium or Nonequilibrium Model
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
314
322
.10.1080/01457632.2015.1052682
34.
Huang
,
Z. F.
,
Nakayama
,
A.
,
Yang
,
K.
,
Yang
,
C.
, and
Liu
,
W.
,
2010
, “
International Journal of Heat and Mass Transfer Enhancing Heat Transfer in the Core Flow by Using Porous Medium Insert in a Tube
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
1164
1174
.10.1016/j.ijheatmasstransfer.2009.10.038
35.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.10.1115/1.1287793
36.
Zukauskas
,
A. A.
,
1987
, “
Convective Heat Transfer in Cross-Flow
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
,
Shah
, and
W.
Aung
, eds.,
Wiley
,
New York
.
37.
Garrity
,
P. T.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2010
, “
Performance of Aluminum and Carbon Foams for Air Side Heat Transfer Augmentation
,”
ASME J. Heat Transfer
,
132
(
12
), pp.
1
9
.10.1115/1.4002172
38.
Xu
,
H. J.
,
Qu
,
Z. G.
, and
Tao
,
W. Q.
,
2011
, “
Thermal Transport Analysis in Parallel-Plate Channel Fi LLED With Open-Celled Metallic Foams
,”
Int. Commun. Heat Mass Transfer
,
38
(
7
), pp.
868
873
.10.1016/j.icheatmasstransfer.2011.04.015
39.
Hamadouche
,
A.
,
Nebbali
,
R.
,
Benahmed
,
H.
,
Kouidri
,
A.
, and
Bousri
,
A.
,
2016
, “
Experimental Investigation of Convective Heat Transfer in an Open-Cell Aluminum Foams
,”
Exp. Therm. Fluid Sci.
,
71
, pp.
86
94
.10.1016/j.expthermflusci.2015.10.009
40.
Zhao
,
C. Y.
,
Kim
,
T.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2001
, “
Thermal Transport Phenomena in Porvair Metal Foams and Sintered Beds
,” University of Cambridge, Cambridge, UK, Report.
41.
Kamath
,
P. M.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2013
, “
Convection Heat Transfer From Aluminium and Copper Foams in a Vertical Channel—An Experimental Study
,”
Int. J. Therm. Sci.
,
64
, pp.
1
10
.10.1016/j.ijthermalsci.2012.08.015
42.
Manglik
,
R. M.
,
2003
,
Heat Transfer Enhancement Heat Transfer Handbook
,
Wiley
,
Hoboken, NJ
, pp.
1029
1130
.
You do not currently have access to this content.