Abstract

Reactive flow happens in carbonate rocks which are porous media during acidification. In this study, a thermochemical dissolution model based on the lattice Boltzmann method (LBM) is established to investigate the complex thermochemical process in porous media with immiscible phase at pore scale. In the model, the immiscible fluid flow, solute transport, and heat transfer are solved by Shan–Chen multicomponent LB model, mass transport LB model, and multicomponent thermal LB model, respectively. The porous media is generated by the quartet structure generation set, and the evolution of solid phase is addressed by volume of pixel (VOP) method. The detailed thermochemical process in porous media with immiscible phase is revealed, and the effects of velocity, concentration, and temperature on mass and heat transfer are further analyzed. The results show that increasing inlet velocity, inlet concentration, and temperature accelerates acidizing process and influences the temperature evolution in porous media significantly.

References

References
1.
Maheshwari
,
P.
,
Ratnakar
,
R. R.
,
Kalia
,
N.
, and
Balakotaiah
,
V.
,
2013
, “
3-D Simulation and Analysis of Reactive Dissolution and Wormhole Formation in Carbonate Rocks
,”
Chem. Eng. Sci.
,
90
, pp.
258
274
.10.1016/j.ces.2012.12.032
2.
Lenog
,
V. H.
, and
Mahmud
,
H. B.
,
2019
, “
A Preliminary Screening and Characterization of Suitable Acids for Sandstone Matrix Acidizing Technique: A Comprehensive Review
,”
J. Pet. Explor. Prod. Technol.
,
9
(
1
), pp.
753
778
.10.1007/s13202-018-0496-6
3.
Liu
,
N. Z.
, and
Liu
,
M.
,
2016
, “
Simulation and Analysis of Wormhole Propagation by VES Acid in Carbonate Acidizing
,”
J. Pet. Sci. Eng.
,
138
, pp.
57
65
.10.1016/j.petrol.2015.12.011
4.
Liu
,
M.
,
Shabaninejad
,
M.
, and
Mostaghimi
,
P.
,
2017
, “
Impact of Mineralogical Heterogeneity on Reactive Transport Modeling
,”
Comput. Geosci.
,
104
, pp.
12
19
.10.1016/j.cageo.2017.03.020
5.
Fazeli
,
H.
,
Patel
,
R.
, and
Hellevang
,
H.
,
2018
, “
Effect of Pore-Scale Mineral Spatial Heterogeneity on Chemically Induced Alterations of Fractured Rock: A Lattice Boltzmann Study
,”
Geofluids
,
2018
, pp.
1
28
.10.1155/2018/6046182
6.
Liu
,
P. L.
,
Xue
,
H.
,
Zhao
,
L. Q.
,
Zhao
,
X. D.
, and
Cui
,
M. Y.
,
2016
, “
Simulation of 3D Multi-Scale Wormhole Propagation in Carbonates Considering Correlation Spatial Distribution of Petrophysical Properties
,”
J. Nat. Gas Sci. Eng.
,
32
, pp.
81
94
.10.1016/j.jngse.2016.04.014
7.
Chen
,
Y.
,
Ma
,
G. W.
,
Li
,
T.
,
Wang
,
Y.
, and
Ren
,
F.
,
2018
, “
Simulation of Wormhole Propagation in Fractured Carbonate Rocks With Unified Pipe-Network Method
,”
Comput. Geotech.
,
98
, pp.
58
68
.10.1016/j.compgeo.2017.11.009
8.
Dong
,
K.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2018
, “
Mechanism of Wormholing and Its Optimal Conditions: A Fundamental Explanation
,”
J. Pet. Sci. Eng.
,
169
, pp.
126
134
.10.1016/j.petrol.2018.05.060
9.
Kalia
,
N.
, and
Glasbergen
,
G.
,
2010
, “
Fluid Temperature as a Design Parameter in Carbonate Matrix Acidizing
,” SPE Production and Operations Conference and Exhibition, Tunis, Tunisia, June 8–10,
SPE
Paper No. SPE-135654-MS.10.2118/135654-MS
10.
Xue
,
H.
,
Huang
,
Z. X.
,
Zhao
,
L. Q.
,
Wang
,
H. H.
,
Kang
,
B.
,
Liu
,
P. L.
,
Liu
,
F.
,
Cheng
,
Y.
, and
Xin
,
J.
,
2018
, “
Influence of Acid-Rock Reaction Heat and Heat Transmission on Wormholing in Carbonate Rock
,”
J. Nat. Gas Sci. Eng.
,
50
, pp.
189
204
.10.1016/j.jngse.2017.12.008
11.
Li
,
Y. M.
,
Liao
,
Y.
,
Zhao
,
J. Z.
,
Peng
,
Y.
, and
Pu
,
X.
,
2017
, “
Simulation and Analysis of Wormhole Formation in Carbonate Rocks Considering Heat Transmission Process
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
120
132
.10.1016/j.jngse.2017.02.048
12.
Shukla
,
S.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2006
, “
The Effect of Phase Saturation Conditions on Wormhole Propagation in Carbonate Acidizing
,”
SPE J.
,
11
(
3
), pp.
273
281
.10.2118/82273-PA
13.
Wei
,
W.
,
Varavei
,
A.
, and
Sepehrnoori
,
K.
,
2017
, “
Modeling and Analysis on the Effect of Two-Phase Flow on Wormhole Propagation in Carbonate Acidizing
,”
SPE J.
,
22
(
6
), pp.
2067
2083
.10.2118/186111-PA
14.
Babaei
,
M.
, and
Sedighi
,
M.
,
2018
, “
Impact of Phase Saturation on Wormhole Formation in Rock Matrix Acidizing
,”
Chem. Eng. Sci.
,
177
, pp.
39
52
.10.1016/j.ces.2017.10.046
15.
Mahmoodi
,
A.
,
Javadi
,
A.
, and
Sola
,
B. S.
,
2018
, “
Porous Media Acidizing Simulation: New Two-Phase Two-Scale Continuum Modeling Approach
,”
J. Pet. Sci. Eng.
,
166
, pp.
679
692
.10.1016/j.petrol.2018.03.072
16.
Liu
,
P. Y.
,
Yan
,
X.
,
Yao
,
J.
, and
Sun
,
S. Y.
,
2019
, “
Modeling and Analysis of the Acidizing Process in Carbonate Rocks Using a Two-Phase Thermal-Hydrologic-Chemical Coupled Model
,”
Chem. Eng. Sci.
,
207
, pp.
215
234
.10.1016/j.ces.2019.06.017
17.
Abouei Mehrizi
,
A.
,
Farhadi
,
M.
,
Sedighi
,
K.
, and
Latif Aghili
,
A.
,
2013
, “
Lattice Boltzmann Simulation of Heat Transfer Enhancement in a Cold Plate Using Porous Medium
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111006
.10.1115/1.4024611
18.
Xu
,
A.
,
Zhao
,
T. S.
,
Shi
,
L.
, and
Xu
,
J. B.
,
2018
, “
Lattice Boltzmann Simulation of Mass Transfer Coefficients for Chemically Reactive Flows in Porous Media
,”
ASME J. Heat Transfer
,
140
(
5
), p.
052601
.10.1115/1.4038555
19.
Kang
,
Q. J.
,
Lichtner
,
P. C.
, and
Zhang
,
D. X.
,
2006
, “
Lattice Boltzmann Pore-Scale Model for Multicomponent Reactive Transport in Porous Media
,”
J. Geophys. Res.
,
111
(
B5
), p.
B05203
.10.1029/2005JB003951
20.
Kang
,
Q. J.
,
Lichtner
,
P. C.
, and
Zhang
,
D. X.
,
2007
, “
An Improved Lattice Boltzmann Model for Multicomponent Reactive Transport in Porous Media at the Pore Scale
,”
Water Resour. Res.
,
43
(
12
), p.
W12S14
.10.1029/2006WR005551
21.
Ahkami
,
M.
,
Parmigiani
,
A.
,
Palma
,
P. R. D.
,
Saar
,
M. O.
, and
Kong
,
X. Z.
,
2020
, “
A Lattice-Boltzmann Study of Permeability-Porosity Relationships and Mineral Precipitation Patterns in Fractured Porous Media
,”
Comput. Geosci.
,
24
, pp.
1865
1882
.10.1007/s10596-019-09926-4
22.
Fazeli
,
H.
,
Patel
,
R. A.
,
Ellis
,
B. R.
, and
Hellevang
,
H.
,
2019
, “
Three-Dimensional Pore-Scale Modeling of Fracture Evolution in Heterogeneous Carbonate Caprock Subjected to CO2-Enriched Brine
,”
Environ. Sci. Technol.
,
53
(
8
), pp.
4630
4639
.10.1021/acs.est.8b05653
23.
Fazeli
,
H.
,
Masoudi
,
M.
,
Patel
,
R. A.
,
Aagaard
,
P.
, and
Hellevang
,
H.
,
2020
, “
Pore-Scale Modeling of Nucleation and Growth in Porous Media
,”
ACS Earth Space Chem.
,
4
(
2
), pp.
249
260
.10.1021/acsearthspacechem.9b00290
24.
Fang
,
X.
,
Feng
,
L. X.
,
Min
,
X.
,
Lan
,
H. X.
,
Jun
,
C.
, and
Xiong
,
G. Z.
,
2013
, “
Simulation of Gas Exothermic Chemical Reaction in Porous Media Reactor With Lattice Boltzmann Method
,”
J. Therm. Sci.
,
22
(
1
), pp.
42
47
.
25.
Wang
,
M.
, and
Zhu
,
W. B.
,
2018
, “
Pore-Scale Study of Heterogeneous Chemical Reaction for Ablation of Carbon Fibers Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1222
1239
.10.1016/j.ijheatmasstransfer.2018.05.133
26.
Zhang
,
L. M.
,
Zhang
,
C. D.
,
Zhang
,
K.
,
Zhang
,
L.
,
Yao
,
J.
,
Sun
,
H.
, and
Yang
,
Y. F.
,
2019
, “
Pore-Scale Investigation of Methane Hydrate Dissociation Using the Lattice Boltzmann Method
,”
Water Resour. Res.
,
55
(
11
), pp.
8422
8444
.
27.
Chen
,
L.
,
Kang
,
Q. J.
,
Tang
,
Q.
,
Robinson
,
B. A.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2015
, “
Pore-Scale Simulation of Multicomponent Multiphase Reactive Transport With Dissolution and Precipitation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
935
949
.10.1016/j.ijheatmasstransfer.2015.02.035
28.
Chen
,
L.
,
Kang
,
Q. J.
,
Robinson
,
B. A.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2013
, “
Pore-Scale Modeling of Multiphase Reactive Transport With Phase Transitions and Dissolution-Precipitation Processes in Closed Systems
,”
Phys. Rev. E
,
87
(
4
), p.
043306
.10.1103/PhysRevE.87.043306
29.
Kang
,
Q. J.
,
Chen
,
L.
,
Valocchi
,
A. J.
, and
Viswanathan
,
H. S.
,
2014
, “
Pore-Scale Study of Dissolution-Induced Changes in Permeability and Porosity of Porous Media
,”
J. Hydrol.
,
517
, pp.
1049
1055
.10.1016/j.jhydrol.2014.06.045
30.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.10.1103/PhysRevE.75.036702
31.
Shan
,
X. W.
, and
Chen
,
H. D.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.10.1103/PhysRevE.47.1815
32.
Shan
,
X. W.
, and
Chen
,
H. D.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
49
(
4
), pp.
2941
2948
.10.1103/PhysRevE.49.2941
33.
Qiu
,
R. F.
,
Wang
,
A. L.
, and
Jiang
,
T.
,
2014
, “
Lattice Boltzmann Method for Natural Convection With Multicomponent and Multiphase Fluids in a Two-Dimensional Square Cavity
,”
Can. J. Chem. Eng.
,
92
(
6
), pp.
1121
1129
.10.1002/cjce.21950
34.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.10.1063/1.869307
35.
Li
,
L.
,
Chen
,
C.
,
Mei
,
R. W.
, and
Klausner
,
J. F.
,
2014
, “
Conjugate Heat and Mass Transfer in the Lattice Boltzmann Equation Method
,”
Phys. Rev. E
,
89
(
4
), p.
043308
.10.1103/PhysRevE.89.043308
36.
Qi
,
N.
,
Chen
,
G. B.
,
Fang
,
M. J.
,
Li
,
B. Y.
,
Liang
,
C.
,
Ren
,
X. H.
, and
Zhang
,
K.
,
2018
, “
Damköhler Number-Based Research on Dividing Dissolution Patterns in Carbonate Acidizing
,”
J. Pet. Sci. Eng.
,
170
, pp.
922
931
.10.1016/j.petrol.2018.06.070
You do not currently have access to this content.