Abstract

The constrained melting of nano-enhanced phase change materials (NePCM) in a horizontal cylindrical capsule was investigated via the utilization of thermochromic liquid crystal (TLC) technique for tracking the invisible phase interfaces. A parametric study was carried out by varying both the loading of NePCM (i.e., 0 wt %, 1 wt %, and 3 wt %) and the wall superheat (at 10 °C and 30 °C), leading to a total of six cases. Numerical simulations, based on the enthalpy-porosity method, were also performed to reveal the evolutions of temperature and convective flow fields during melting. It was first shown that the numerically predicted melting front evolutions are in good agreement with the TLC imaging results. A comparison among the six cases indicated that there is a similar melting pattern that heat conduction dominates the initial stage of melting and natural convection then takes over to play a more important role when melting proceeds. With the TLC-assisted reconstruction of the melting fronts, the instantaneous melting and heat storage rates were estimated, and melting was clearly found to slow down with increasing the loading of NePCM, as a result of the dramatically increased viscosity that deteriorates the contribution of natural convection to melting heat transfer.

References

References
1.
Hasnain
,
S. M.
,
1998
, “
Review on Sustainable Thermal Energy Storage Technologies—Part I: Heat Storage Materials and Techniques
,”
Energy Convers. Manag.
,
39
(
11
), pp.
1127
1138
.10.1016/S0196-8904(98)00025-9
2.
Farid
,
M. M.
,
Khudhair
,
A. M.
,
Razack
,
S. A. K.
, and
Al-Hallaj
,
S.
,
2004
, “
A Review on Phase Change Energy Storage: Materials and Applications
,”
Energy Convers. Manag.
,
45
(
9–10
), pp.
1597
1615
.10.1016/j.enconman.2003.09.015
3.
Rozenfeld
,
T.
,
Kozak
,
Y.
,
Hayat
,
R.
, and
Ziskind
,
G.
,
2015
, “
Close-Contact Melting in a Horizontal Cylindrical Enclosure With Longitudinal Plate Fins: Demonstration, Modeling and Application to Thermal Storage
,”
Int. J. Heat Mass Transfer
,
86
, pp.
465
477
.10.1016/j.ijheatmasstransfer.2015.02.064
4.
Esapour
,
M.
,
Hamzehnezhad
,
A.
,
Darzi
,
A. A. R.
, and
Jourabian
,
M.
,
2018
, “
Melting and Solidification of PCM Embedded in Porous Metal Foam in Horizontal Multi-Tube Heat Storage System
,”
Energy Convers. Manag.
,
171
, pp.
398
410
.10.1016/j.enconman.2018.05.086
5.
Fan
,
L. W.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
6.
Khodadadi
,
J. M.
,
Fan
,
L. W.
, and
Babaei
,
H.
,
2013
, “
Thermal Conductivity Enhancement of Nanostructure-Based Colloidal Suspensions Utilized as Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
418
444
.10.1016/j.rser.2013.03.031
7.
Yu
,
Z. T.
,
Fang
,
X.
,
Fan
,
L. W.
,
Wang
,
X.
,
Xiao
,
Y. Q.
,
Zeng
,
Y.
,
Xu
,
X.
,
Hu
,
Y. C.
, and
Cen
,
K. F.
,
2013
, “
Increased Thermal Conductivity of Liquid Paraffin-Based Suspensions in the Presence of Carbon Nano-Additives of Various Size and Shapes
,”
Carbon
,
53
, pp.
277
285
.10.1016/j.carbon.2012.10.059
8.
Rahman
,
M. M.
,
Hu
,
H.
,
Shabgard
,
H.
,
Boettcher
,
P.
,
Sun
,
Y.
, and
McCarthy
,
M.
,
2016
, “
Experimental Characterization of Inward Freezing and Melting of Additive-Enhanced Phase-Change Materials Within Millimeter-Scale Cylindrical Enclosures
,”
ASME J. Heat Transfer
,
138
(
7
), p.
072301
.10.1115/1.4033007
9.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Ding
,
Q.
, and
Liu
,
M. J.
,
2016
, “
Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM
),”
Int. J. Heat Mass Transfer
,
95
, pp.
1057
1069
.10.1016/j.ijheatmasstransfer.2016.01.013
10.
Liu
,
M. J.
,
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Feng
,
B.
,
Zhang
,
H. C.
, and
Zeng
,
Y.
,
2016
, “
A Volume-Shrinkage-Based Method for Quantifying the Inward Solidification Heat Transfer of a Phase Change Material Filled in Spherical Capsules
,”
Appl. Therm. Eng.
,
108
, pp.
1200
1205
.10.1016/j.applthermaleng.2016.08.027
11.
Gau
,
C.
, and
Viskanta
,
R.
,
1986
, “
Melting and Solidification of a Pure Metal on a Vertical Wall
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
174
181
.10.1115/1.3246884
12.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Investigation of Melting of NePCM Inside an Annular Container Under a Constant Heat Flux Including the Effect of Eccentricity
,”
Int. J. Heat Mass Transfer
,
67
, pp.
455
468
.10.1016/j.ijheatmasstransfer.2013.08.002
13.
Zeng
,
Y.
,
Fan
,
L. W.
,
Xiao
,
Y. Q.
,
Yu
,
Z. T.
, and
Cen
,
K. F.
,
2013
, “
An Experimental Investigation of Melting of Nanoparticle-Enhanced Phase Change Materials (NePCMs) in a Bottom-Heated Vertical Cylindrical Cavity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
111
117
.10.1016/j.ijheatmasstransfer.2013.07.022
14.
Hu
,
N.
,
Li
,
Z. R.
,
Zhang
,
R. H.
, and
Fan
,
L. W.
,
2020
, “
A Novel Indirect Visualization Method for Studying the Melting Heat Transfer of Nano-Enhanced Phase Change Materials (NePCM) Using Thermochromic Liquid Crystal (TLC) Thermography
,”
ASME J. Heat Transfer
,
142
(
4
), p.
042501
.10.1115/1.4045758
15.
Ho
,
C. J.
, and
Gao
,
J. Y.
,
2013
, “
An Experimental Study on Melting Heat Transfer of Paraffin Dispersed With Al2O3 Nanoparticles in a Vertical Enclosure
,”
Int. J. Heat Mass Transfer
,
62
, pp.
2
8
.10.1016/j.ijheatmasstransfer.2013.02.065
16.
Li
,
Z. R.
,
Hu
,
N.
,
Tu
,
J.
, and
Fan
,
L. W.
,
2020
, “
An Experimental Investigation of the Heat Storage and Heat Transfer Rates During Melting of Nano-Enhanced Phase Change Materials (NePCM) in a Differentially-Heated Rectangular Cavity
,”
J. Therm. Sci.
,
29
(
2
), pp.
503
511
.10.1007/s11630-020-1225-2
17.
Sparrow
,
E. M.
, and
Geiger
,
G. T.
,
1986
, “
Melting in a Horizontal Tube With the Solid Either Constrained or Free to Fall Under Gravity
,”
Int. J. Heat Mass Transfer
,
29
(
7
), pp.
1007
1019
.10.1016/0017-9310(86)90200-0
18.
Liu
,
C.
, and
Groulx
,
D.
,
2014
, “
Experimental Study of the Phase Change Heat Transfer Inside a Horizontal Cylindrical Latent Heat Energy Storage System
,”
Int. J. Therm. Sci.
,
82
, pp.
100
110
.10.1016/j.ijthermalsci.2014.03.014
19.
Dhaidan
,
N. S.
, and
Khodadadi
,
J. M.
,
2015
, “
Melting and Convection of Phase Change Materials in Different Shape Containers: A Review
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
449
477
.10.1016/j.rser.2014.11.017
20.
Regin
,
A.
F.,
Solanki
,
S. C.
, and
Saini
,
J. S.
,
2006
, “
Latent Heat Thermal Energy Storage Using Cylindrical Capsule: Numerical and Experimental Investigations
,”
Renewable Energy
,
31
(
13
), pp.
2025
2041
.10.1016/j.renene.2005.10.011
21.
Dhaidan
,
N. S.
,
Khodadadi
,
J. M.
,
Al-Hattab
,
T. A.
, and
Al-Mashat
,
S. M.
,
2013
, “
Experimental and Numerical Study of Constrained Melting of n-Octadecane With CuO Nanoparticle Dispersions in a Horizontal Cylindrical Capsule Subjected to a Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
67
, pp.
523
534
.10.1016/j.ijheatmasstransfer.2013.08.001
22.
Fan
,
L. W.
,
Zhu
,
Z. Q.
,
Zeng
,
Y.
,
Lu
,
Q.
, and
Yu
,
Z. T.
,
2014
, “
Heat Transfer During Melting of Graphene-Based Composite Phase Change Materials Heated From Below
,”
Int. J. Heat Mass Transfer
,
79
, pp.
94
104
.10.1016/j.ijheatmasstransfer.2014.08.001
23.
Hu
,
N.
,
Zhu
,
Z. Q.
,
Li
,
Z. R.
,
Tu
,
J.
, and
Fan
,
L. W.
,
2019
, “
Unconstrained Melting Heat Transfer of Nano-Enhanced Phase-Change Materials in a Spherical Capsule for Latent Heat Storage: Effects of the Capsule Size
,”
ASME J. Heat Transfer
,
141
, p.
072301
.10.1115/1.4043621
24.
Saitoh
,
T.
, and
Kato
,
K.
,
1993
, “
Experiments on Melting in Heat Storage Capsule With Close Contact and Natural Convection
,”
Exp. Therm. Fluid Sci.
,
6
(
3
), pp.
273
281
.10.1016/0894-1777(93)90068-T
25.
Costa
,
M.
,
Oliva
,
A.
, and
Perez-Segarra
,
C. D.
,
1997
, “
Three-Dimensional Numerical Study of Melting Inside an Isothermal Horizontal Cylinder
,”
Num. Heat Transfer, Part A
,
32
(
5
), pp.
531
553
.10.1080/10407789708913905
26.
Ho
,
C. J.
, and
Viskanta
,
R.
,
1984
, “
Heat Transfer During Inward Melting in a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
705
716
.10.1016/0017-9310(84)90140-6
27.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
,
1988
, “
Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Num. Heat Transfer
,
13
(
3
), pp.
297
318
.10.1080/10407788808913615
28.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2005
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3689
3706
.10.1016/j.ijheatmasstransfer.2004.10.042
29.
Tan
,
F. L.
,
Hosseinizadeh
,
S. F.
,
Khodadadi
,
J. M.
, and
Fan
,
L.
,
2009
, “
Experimental and Computational Study of Constrained Melting of Phase Change Materials (PCM) Inside a Spherical Capsule
,”
Int. J. Heat Mass Transfer
,
52
(
15–16
), pp.
3464
3472
.10.1016/j.ijheatmasstransfer.2009.02.043
30.
Ben-David
,
O.
,
Levy
,
A.
,
Mikhailovich
,
B.
, and
Azulay
,
A.
,
2013
, “
3D Numerical and Experimental Study of Gallium Melting in a Rectangular Container
,”
Int. J. Heat Mass Transfer
,
67
, pp.
260
271
.10.1016/j.ijheatmasstransfer.2013.07.058
31.
Hindmarsh
,
A. C.
,
Brown
,
P. N.
,
Grant
,
K. E.
,
Lee
,
S. L.
,
Serban
,
R.
,
Shumaker
,
D. E.
, and
Woodward
,
C. S.
,
2005
, “
Sundials: Suite of Nonlinear and Differential/Algebraic Equation Solver
,”
ACNT Math. Software
,
31
(
3
), pp.
363
369
.10.1145/1089014.1089020
32.
Jany
,
P.
, and
Bejan
,
A.
,
1988
, “
Scaling Theory of Melting With Natural Convection in an Enclosure
,”
Int. J. Heat Mass Transfer
,
31
(
6
), pp.
1221
1235
.10.1016/0017-9310(88)90065-8
You do not currently have access to this content.