Abstract

In our earlier work (Jadhav, and Agrawal, 2020, “Grad's second problem and its solution within the framework of Burnett hydrodynamics,” ASME J. Heat Transfer, 142(10), p. 102105), we proposed Grad's second problem (examination of steady-state solution for a gas at rest upon application of a one-dimensional heat flux) as a potential benchmark problem for testing the accuracy of different higher order continuum theories and solved the problem within the framework of Burnett hydrodynamics. In this work, we solve this problem within the moment framework and also examine two variants, Bhatnagar–Gross–Krook (BGK)–Burnett and regularized 13 moment equations, for this problem. It is observed that only the conventional form of Burnett equations which are derived retaining the full nonlinear collision integral are able to capture nonuniform pressure profile observed in case of hard-sphere molecules. On the other hand, BGK–Burnett equations derived using BGK-kinetic model predict uniform pressure profile in both the cases. It seems that the variants based on BGK-kinetic model do not distinguish between hard-sphere and Maxwell molecules at least for the problem considered. With respect to moment equations, Grad 13 and regularized 13 moment equations predict consistent results for Maxwell molecules. However, for hard-sphere molecules, since the exact closed form of moment equations is not known, it is difficult to comment upon the results of moment equations for hard-sphere molecules. The present results for this relatively simple problem provide valuable insights into the nature of the equations and important remarks are made in this context.

References

References
1.
Burnett
,
D.
,
1936
, “
The Distribution of Molecular Velocities and the Mean Motion in a Non-Uniform Gas
,”
Proc. London Math. Soc.
,
2
(
1
), pp.
382
435
.10.1112/plms/s2-40.1.382
2.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
,
Cambridge University Press, Cambridge, UK
.
3.
Grad
,
H.
,
1949
, “
On the Kinetic Theory of Rarefied Gases
,”
Commun. Pure Appl. Math.
,
2
(
4
), pp.
331
407
.10.1002/cpa.3160020403
4.
Grad
,
H.
,
1958
,
Principles of the Kinetic Theory of Gases
,
Springer
,
Berlin
, pp.
205
294
.
5.
Bobylev
,
A.
,
2006
, “
Instabilities in the Chapman-Enskog Expansion and Hyperbolic Burnett Equations
,”
J. Stat. Phys.
,
124
(
2–4
), pp.
371
399
.10.1007/s10955-005-8087-6
6.
Comeaux
,
K. A.
,
Chapman
,
D. R.
, and
MacCormack
,
R. W.
,
1995
, “
An Analysis of the Burnett Equations Based on the Second Law of Thermodynamics
,”
33rd Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 9–12, p.
415
.
7.
Garcia-Colin
,
L.
,
Velasco
,
R.
, and
Uribe
,
F.
,
2008
, “
Beyond the Navier-Stokes Equations: Burnett Hydrodynamics
,”
Phys. Rep.
,
465
(
4
), pp.
149
189
.10.1016/j.physrep.2008.04.010
8.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2019
,
Microscale Flow and Heat Transfer: Mathematical Modelling and Flow Physics
,
Springer
,
Cham, Switzerland
.
9.
Torrilhon
,
M.
, and
Struchtrup
,
H.
,
2004
, “
Regularized 13-Moment Equations: Shock Structure Calculations and Comparison to Burnett Models
,”
J. Fluid Mech.
,
513
, pp.
171
198
.10.1017/S0022112004009917
10.
Struchtrup
,
H.
, and
Torrilhon
,
M.
,
2003
, “
Regularization of Grad's 13 Moment Equations: Derivation and Linear Analysis
,”
Phys. Fluids
,
15
(
9
), pp.
2668
2680
.10.1063/1.1597472
11.
Torrilhon
,
M.
,
2016
, “
Modeling Nonequilibrium Gas Flow Based on Moment Equations
,”
Annu. Rev. Fluid Mech.
,
48
(
1
), pp.
429
458
.10.1146/annurev-fluid-122414-034259
12.
Singh
,
N.
,
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2017
, “
Derivation of Stable Burnett Equations for Rarefied Gas Flows
,”
Phys. Rev. E
,
96
(
1
), p.
013106
.10.1103/PhysRevE.96.013106
13.
Singh
,
N.
, and
Agrawal
,
A.
,
2016
, “
Onsager's-Principle-Consistent 13-Moment Transport Equations
,”
Phys. Rev. E
,
93
(
6
), p.
063111
.10.1103/PhysRevE.93.063111
14.
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2020
, “
Grad's Second Problem and Its Solution Within the Framework of Burnett Hydrodynamics
,”
ASME J. Heat Transfer
,
142
(
10
), p.
102105
.10.1115/1.4047518
15.
Asmolov
,
E. S.
,
Makashev
,
N. K.
, and
Nosik
,
V. I.
,
1979
, “
Heat Transfer Between Plane Parallel Plates in a Gas of Maxwellian Molecules
,”
Akademiia Nauk SSSR Doklady
,
249
, pp.
577
580
.http://mi.mathnet.ru/dan43169
16.
Montanero
,
J.
,
Alaoui
,
M.
,
Santos
,
A.
, and
Garzó
,
V.
,
1994
, “
Monte Carlo Simulation of the Boltzmann Equation for Steady Fourier Flow
,”
Phys. Rev. E
,
49
(
1
), pp.
367
375
.10.1103/PhysRevE.49.367
17.
Santos
,
A.
,
2009
, “
Solutions of the Moment Hierarchy in the Kinetic Theory of Maxwell Models
,”
Continuum Mech. Thermodyn.
,
21
(
5
), pp.
361
387
.10.1007/s00161-009-0113-5
18.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
19.
Holway
,
L. H.
,
1966
, “
New Statistical Models for Kinetic Theory: Methods of Construction
,”
Phys. Fluids
,
9
(
9
), pp.
1658
1673
.10.1063/1.1761920
20.
Balakrishnan
,
R.
,
1999
, “
Entropy Consistent Formulation and Numerical Simulation of the BGK-Burnett Equations for Hypersonic Flows in the Continuum-Transition Regime
,”
Ph.D. thesis
,
Wichita State University, Wichita, KA
.https://ui.adsabs.harvard.edu/abs/1999PhDT.......141B/abstract
21.
Balakrishnan
,
R.
,
2004
, “
An Approach to Entropy Consistency in Second-Order Hydrodynamic Equations
,”
J. Fluid Mech.
,
503
, pp.
201
245
.10.1017/S0022112004007876
22.
Agarwal
,
R. K.
,
Yun
,
K.-Y.
, and
Balakrishnan
,
R.
,
2001
, “
Beyond Navier-Stokes: Burnett Equations for Flows in the Continuum-Transition Regime
,”
Phys. Fluids
,
13
(
10
), pp.
3061
3085
.10.1063/1.1397256
23.
Zheng
,
Y.
, and
Struchtrup
,
H.
,
2004
, “
Burnett Equations for the Ellipsoidal Statistical BGK Model
,”
Continuum Mech. Thermodyn.
,
16
(
1–2
), pp.
97
108
.10.1007/s00161-003-0143-3
24.
Struchtrup
,
H.
,
2005
,
Macroscopic Transport Equations for Rarefied Gas Flows
,
Springer, Berlin
.
25.
Santos
,
A.
,
Brey
,
J. J.
, and
Garzó
,
V.
,
1986
, “
Kinetic Model for Steady Heat Flow
,”
Phys. Rev. A
,
34
(
6
), pp.
5047
5050
.10.1103/PhysRevA.34.5047
26.
Truesdell
,
C.
, and
Muncaster
,
R. G.
,
1980
,
Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics
, Vol.
83
,
Academic Press
,
New York
.
27.
Bobylev
,
A.
,
1982
, “
The Chapman-Enskog and Grad Methods for Solving the Boltzmann Equation
,”
Akademiia Nauk SSSR Doklady
,
262
, pp.
71
75
.https://ui.adsabs.harvard.edu/abs/1982DoSSR.262...71B
28.
Zhong
,
X.
,
MacCormack
,
R. W.
, and
Chapman
,
D. R.
,
1993
, “
Stabilization of the Burnett Equations and Application to Hypersonic Flows
,”
AIAA J.
,
31
(
6
), pp.
1036
1043
.10.2514/3.11726
29.
Cai
,
Z.
, and
Wang
,
Y.
,
2020
, “
Regularized 13-Moment Equations for Inverse Power Law Models
,”
J. Fluid Mech.
,
894
, p.
A12
.10.1017/jfm.2020.251
30.
Agrawal
,
A.
,
2016
, “
Higher-Order Continuum Equation Based Heat Conduction Law
,”
INAE Lett.
,
1
(
2
), p.
35
.10.1007/s41403-016-0007-3
You do not currently have access to this content.