Abstract

This study investigates the mean flow and radial heat-transfer behaviors in semiclosed rotating disk cavity within the canned reactor coolant pump. The flow in the semiclosed cavity contains the Stewartson type flow at inner region and the Batchelor type flow at outer region. The heat is radially transported from the outer rim of the semiclosed disk cavity to discharge-hole through the nondirect discharge (ND) portion of the superimposed flow from inlet. The effects of rotating Reynolds numbers, cavity aspect ratio and radial location of discharge-hole on the discharge ratio, pumping mass flow rate, local wall shear stress and radial heat-transfer coefficient are examined in the semiclosed rotating cavity flow, respectively. Based on the radial heat transfer behaviors of pumping secondary flow, an equivalent thermal network is proposed and validated by experiments, which can effectively predict the radial temperature distribution from the discharge hole to periphery with the viscous-heating and nonisothermal effects.

Reference

Reference
1.
Childs
,
P. R. N.
,
2011
,
Rotating Flows
,
Elsevier
,
Oxford, UK
.
2.
Guo
,
M.
,
Liu
,
S.-H.
,
Tang
,
X.-L.
,
Zuo
,
Z.-G.
, and
Li
,
X.-Q.
,
2018
, “
Evaluation of Shaft Forces in a Vertical Canned Motor Through Local Hydraulic Loss Analysis
,”
Adv. Mech. Eng.
,
10
(
3
), pp.
1
20
.
3.
Batchelor
,
G. K.
,
1951
, “
Note on a Class of Solutions of the Naiver-Stokes Equations Representing Steady Rotationally-Symmetric Flow
,”
Q. J. Mech. Appl. Math.
,
4
(
1
), pp.
29
41
.10.1093/qjmam/4.1.29
4.
Harmand
,
S.
,
Pellé
,
J.
,
Poncet
,
S.
, and
Shevchuk
,
I. V.
,
2013
, “
Review of Fluid Flow and Convective Heat Transfer Within Rotating Disk Cavities With Impinging Jet
,”
Int. J. Therm. Sci.
,
67
, pp.
1
30
.10.1016/j.ijthermalsci.2012.11.009
5.
Poncet
,
S.
,
Chauve
,
M.-P.
, and
Le Gal
,
P.
,
2005
, “
Turbulent Rotating Disk Flow With Inward Through Flow
,”
J. Fluid Mech.
,
522
, pp.
253
262
.10.1017/S0022112004002046
6.
Debuchy
,
R.
,
Abdel Nour
,
F.
, and
Bois
,
G.
,
2010
, “
An Analytical Modeling of the Central Core Flow in a Rotor-Stator System With Several Preswirl Conditions
,”
ASME. J. Fluids Eng.
,
132
(
6
), p.
061102
.10.1115/1.4001576
7.
Stewartson
,
K.
,
1953
, “
On the Flow Between Two Rotating Coaxial Disks
,”
Math. Proc. Cambridge Philos. Soc.
,
49
(
2
), pp.
333
341
.10.1017/S0305004100028437
8.
Brady
,
J. F.
, and
Durlofsky
,
L.
,
1987
, “
On Rotating Disk Flow
,”
J. Fluid Mech.
,
175
(
1
), pp.
363
394
.10.1017/S0022112087000430
9.
Daily
,
J. W.
, and
Nece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Friction Resistance of Enclosed Rotating Disk Flow
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
217
230
.10.1115/1.3662532
10.
Haddadi
,
S.
, and
Poncet
,
S.
,
2008
, “
Turbulence Modeling of Torsional Couette Flows
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
27
.10.1155/2008/635138
11.
Poncet
,
S.
,
Chauve
,
M.-P.
, and
Schiestel
,
R.
,
2005
, “
Batchelor Flow Versus Stewartson Flow Structures in a Rotor-Stator Cavity With Through Flow
,”
Phys. Fluids
,
17
(
7
), p.
075110
.10.1063/1.1964791
12.
Hu
,
B.
,
Li
,
X.-S.
,
Fu
,
Y.-X.
,
Zhang
,
F.
,
Gu
,
C.-W.
,
Ren
,
X.-D.
, and
Wang
,
C.
,
2019
, “
Experimental Investigation on the Flow and Flow-Rotor Heat Transfer in a Rotor-Stator Spinning Disk Reactor
,”
Appl. Therm. Eng.
,
162
, p.
114316
.10.1016/j.applthermaleng.2019.114316
13.
Liao
,
G.-L.
,
Wang
,
X.-J.
,
Li
,
J.
, and
Zhou
,
J.-F.
,
2015
, “
Numerical Investigation on the Flow and Heat Transfer in a Rotor-Stator Disc Cavity
,”
Appl. Therm. Eng.
,
87
, pp.
10
23
.10.1016/j.applthermaleng.2015.05.002
14.
Yamada
,
Y.
, and
Ito
,
M.
,
1974
, “
The Effects of the Radial Through Flow-Rate on the Frictional Resistance of the Enclosed Rotating Disk
,”
Bull. Nagoya Inst. Technol.
,
26
, pp.
315
322
.
15.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
, “
Flow and Heat Transfer in Rotating-Disc Systems
,”
Rotor-Stator Systems
, Vol.
1
,
Wiley
,
New-York
.
16.
Rasekh
,
A.
,
Sergeant
,
P.
, and
Vierendeels
,
J.
,
2015
, “
Convective Heat Transfer Prediction in Disk-Type Electrical Machines
,”
Appl. Therm. Eng.
,
91
, pp.
778
790
.10.1016/j.applthermaleng.2015.08.093
17.
Pellé
,
J.
, and
Harmand
,
S.
,
2007
, “
Heat Transfer Measurements in an Opened Rotor-Stator System Air-Gap
,”
Exp. Therm. Fluid Sci.
,
31
(
3
), pp.
165
180
.10.1016/j.expthermflusci.2006.03.018
18.
Launder
,
B.
,
Poncet
,
S.
, and
Serre
,
E.
,
2010
, “
Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
229
248
.10.1146/annurev-fluid-121108-145514
19.
Luo
,
G.-H.
,
Yao
,
Z.-Q.
, and
Shen
,
H.
,
2018
, “
A New Hybrid Turbulence Model Applied to Highly Turbulent Taylor-Couette Flow
,”
Phys. Fluids
,
30
(
6
), p.
065103
.10.1063/1.5025888
20.
Larsson
,
J.
,
Lien
,
F. S.
, and
Yee
,
E.
,
2007
, “
The Artificial Buffer Layer and the Effects of Forcing in Hybrid LES/RANS
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1443
1459
.10.1016/j.ijheatfluidflow.2007.04.007
21.
Wolfshtein
,
M.
,
1969
, “
The Velocity and Temperature Distribution in One Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
(
3
), pp.
301
318
.10.1016/0017-9310(69)90012-X
22.
Yoshizawa
,
A.
,
1986
, “
Statistical Theory for Compressible Turbulent Shear Flows, With the Application to Subgrid Modeling
,”
Phys. Fluids
,
29
(
7
), pp.
2152
2164
.10.1063/1.865552
23.
Hamba
,
F.
,
2011
, “
Analysis of Filtered Navier–Stokes Equation for Hybrid RANS/LES Simulation
,”
Phys. Fluids
,
23
(
1
), p.
015108
.10.1063/1.3549933
24.
Piomelli
,
U.
,
Balaras
,
E.
,
Pasinato
,
H.
,
Squires
,
K. D.
, and
Spalart
,
P. R.
,
2003
, “
The Inner–Outer Layer Interface in Large-Eddy Simulations With Wall-Layer Models
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
538
550
.10.1016/S0142-727X(03)00048-1
25.
Kempf
,
A.
,
Klein
,
M.
, and
Janicka
,
J.
,
2005
, “
Efficient Generation of Initial- and Inflow-Conditions for Transient Turbulent Flows in Arbitrary Geometries
,”
Flow Turbul. Combust.
,
74
(
1
), pp.
67
84
.10.1007/s10494-005-3140-8
26.
Issa
,
R.
,
1986
, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phy.
,
62
(
1
), pp.
40
65
.10.1016/0021-9991(86)90099-9
27.
Sweby
,
K.
,
1984
, “
High Resolution Schemes Using Flux–Limiters for Hyperbolic Conservation Laws
,”
SIAM J. Numer. Anal.
,
21
(
5
), pp.
995
1011
.10.1137/0721062
28.
Jasak
,
H.
,
Weller
,
H.
, and
Gosman
,
A.
,
1999
, “
High Resolution NVD Differencing Scheme for Arbitrarily Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
,
31
(
2
), pp.
431
449
.10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.0.CO;2-T
29.
Elena
,
L.
,
1994
, “
Turbulence Modelling of Inhomogeneous Rotating Flows
,” Ph.D. thesis,
Université Aix-Marseille I-II
,
Marseille, France
.
30.
Itoh
,
M.
,
1995
, “
Experiments on the Turbulent Flow in the Narrow Clearance Between a Rotating and a Stationary Disk
,”
Turbul. Flows
,
208
, pp.
27
32
.
31.
Appelquist
,
E.
,
Schlatter
,
P.
,
Alfredsson
,
P. H.
, and
Lingwood
,
R.
,
2018
, “
Turbulence in the Rotating-Disk Boundary Layer Investigated Through Direct Numerical Simulations
,”
Eur. J. Mech. B/Fluids
,
70
, pp.
6
18
.10.1016/j.euromechflu.2018.01.008
32.
White
,
F. M.
,
1999
,
Fluid Mechnanics
,
4
th ed.,
McGrawHill
,
New York
, pp.
770
771
.
You do not currently have access to this content.