Abstract

A novel design of the dielectric barrier discharge (DBD) actuator/sensor is proposed for mapping the location of icing on a surface. The new design uses segmentation of the embedded electrode of the DBD actuator. Segmented DBD actuator/sensor devices were fabricated and experimentally tested in terms of mechanical, thermal and sensing abilities. The sensing capability of the new actuator was analyzed experimentally. Stationary and dynamic icing tests were conducted and the electrical characteristics of the DBD were measured. A parametric study on the effect of the electrode dimensions on the degree of sensitivity of the device was performed. Experimental results show that by using a segmented configuration it is possible to sense the onset of ice formation and also to detect its location. Furthermore, it is possible to detect the initiation of the melting process and measure the time for the water/ice to be completely expelled from the surface. It is also shown that the segmented actuator has better deicing performance in comparison to the conventional actuators. It is also shown that the thermal and active flow control abilities are not compromised by the segmented configuration and thus this device may perform deicing, ice formation and location detection and active flow control.

References

References
1.
Roy
,
S.
,
Izad
,
A.
,
Deanna
,
R. G.
, and
Mehregany
,
M.
,
1998
, “
Smart Ice Detection Systems Based on Resonant Piezoelectric Transducers
,”
Sens. Actuators A
,
69
(
3
), pp.
243
250
.10.1016/S0924-4247(98)00101-0
2.
Shajiee
,
S.
,
Wagner
,
P. N.
,
Pao
,
L. Y.
, and
Mcleod
,
R. R.
,
2012
, “
Development of a Novel Ice Sensing and Active De-Icing Method for Wind Turbines
,”
AIAA Paper No. 2012-1153
.10.2514/6.2012-1153
3.
Gao
,
L.
,
Liu
,
Y.
,
Ma
,
L.
, and
Hu
,
H.
,
2019
, “
A Hybrid Strategy Combining Minimized Leading-Edge Electric-Heating and Superhydro-/Ice-Phobic Surface Coating for Wind Turbine Icing Mitigation
,”
Renewable Energy
,
140
, pp.
943
956
.10.1016/j.renene.2019.03.112
4.
Virk
,
M.
,
Mustafa
,
M.
, and
Hamdan
,
Q.-A.
,
2011
, “
Atmospheric Ice Accretion Measurement Techniques
,”
Int. J. Multiphys.
,
5
(
3
), pp.
229
242
.10.1260/1750-9548.5.3.229
5.
Skrimpas
,
G. A.
,
Kleani
,
K.
,
Mijatovic
,
N.
,
Sweeney
,
C. W.
,
Jensen
,
B. B.
, and
Holboell
,
J.
,
2016
, “
Detection of Icing on Wind Turbine Blades by Means of Vibration and Power Curve Analysis
,”
Wind Energy
,
19
(
10
), pp.
1819
1832
.10.1002/we.1952
6.
Barthod
,
C.
,
Passard
,
M.
,
Bouillot
,
J.
,
Galez
,
C.
, and
Farzaneh
,
M.
,
2004
, “
High Electric Field Measurement and Ice Detection Using a Safe Probe Near Power Installations
,”
Sens. Actuators A
,
113
(
2
), pp.
140
146
.10.1016/j.sna.2004.02.007
7.
Mughal
,
U. N.
,
Virk
,
M. S.
, and
Mustafa
,
M. Y.
,
2016
, “
State of the Art Review of Atmospheric Icing Sensors
,”
Sens. Transducers
,
198
(
3
), pp.
2
15
.https://www.researchgate.net/publication/301215876_State_of_the_Art_Review_of_Atmospheric_Icing_Sensors
8.
Ikiades
,
A.
,
Howard
,
G.
,
Armstrong
,
D. J.
,
Konstantaki
,
M.
, and
Crossley
,
S.
,
2007
, “
Measurement of Optical Diffusion Properties of Ice for Direct Detection Ice Accretion Sensors
,”
Sens. Actuators A
,
140
(
1
), pp.
24
31
.10.1016/j.sna.2007.05.036
9.
Owusu
,
K. P.
,
Kuhn
,
D. C. S.
, and
Bibeau
,
E. L.
,
2013
, “
Capacitive Probe for Ice Detection and Accretion Rate Measurement: Proof of Concept
,”
Renewable Energy
,
50
, pp.
196
205
.10.1016/j.renene.2012.06.003
10.
Rodrigues
,
F.
,
Mushyam
,
A.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2019
, “
A New Plasma Actuator Configuration for Improved Efficiency: The Stair-Shaped Dielectric Barrier Discharge Actuator
,”
J. Phys. D
,
52
(
38
), pp.
385201
385014
.10.1088/1361-6463/ab2584
11.
Rodrigues
,
F.
,
Pascoa
,
J. C.
, and
Trancossi
,
M.
,
2018
, “
Experimental Analysis of Alternative Dielectric Materials for DBD Plasma Actuators
,”
ASME Paper No. IMECE2018-87455
.10.1115/IMECE2018-87455
12.
Little
,
J.
,
Singh
,
A.
,
Ashcraft
,
T.
, and
Durasiewicz
,
C.
,
2019
, “
Post-Stall Flow Control Using Nanosecond Pulse Driven Dielectric Barrier Discharge Plasma Actuators
,”
Plasma Sources Sci. Technol.
,
28
(
1
), p.
014002
.10.1088/1361-6595/aaf52f
13.
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2018
, “
Comparison of DBD Plasma Actuators Flow Control Authority in Different Modes of Actuation
,”
Aerosp. Sci. Technol.
,
78
, pp.
183
196
.10.1016/j.ast.2018.04.013
14.
Abdollahzadeh
,
M.
,
Rodrigues
,
F.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2015
, “
Numerical Design and Analysis of a Multi-DBD Actuator Configuration for the Experimental Testing of ACHEON Nozzle Model
,”
Aerosp. Sci. Technol.
,
41
, pp.
259
273
.10.1016/j.ast.2014.12.012
15.
Abdollahzadeh
,
M.
,
Páscoa
,
J. C.
, and
Oliveira
,
P. J.
,
2014
, “
Two-Dimensional Numerical Modeling of Interaction of Micro-Shock Wave Generated by Nanosecond Plasma Actuators and Transonic Flow
,”
J. Comput. Appl. Math.
,
270
, pp.
401
416
.10.1016/j.cam.2013.12.030
16.
Xisto
,
C. M.
,
Páscoa
,
J. C.
,
Abdollahzadeh
,
M.
,
Leger
,
J. A.
,
Schwaiger
,
M.
, and
Wills
,
D.
,
2014
, “
PECyT - Plasma Enhanced Cycloidal Thruster
,”
AIAA
Paper No. AIAA 2014–3854
. 10.2514/6.2014-3854
17.
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2016
, “
Implementation of the Classical Plasma–Fluid Model for Simulation of Dielectric Barrier Discharge (DBD) Actuators in OpenFOAM
,”
Comput. Fluids
,
128
, pp.
77
90
.10.1016/j.compfluid.2016.01.012
18.
Abdollahzadeh
,
M.
,
Pascoa
,
J. C.
, and
Oliveira
,
P. J.
,
2014
, “
Modified Split-Potential Model for Modeling the Effect of DBD Plasma Actuators in High Altitude Flow Control
,”
Curr. Appl. Phys.
,
14
(
8
), pp.
1160
1170
.10.1016/j.cap.2014.05.016
19.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D
,
40
(
3
), pp.
605
636
.10.1088/0022-3727/40/3/S01
20.
Durscher
,
R. J.
, and
Roy
,
S.
,
2012
, “
Three-Dimensional Flow Measurements Induced From Serpentine Plasma Actuators in Quiescent Air
,”
J. Phys. D
,
45
(
3
), p.
035202
.10.1088/0022-3727/45/3/035202
21.
Singh
,
K. P.
,
Roy
,
S.
, and
Gaitonde
,
D. V.
,
2006
, “
Study of Control Parameters for Separation Mitigation Using an Asymmetric Single Dielectric Barrier
,”
Plasma Sources Sci. Technol.
,
15
(
4
), pp.
735
743
.10.1088/0963-0252/15/4/018
22.
Abdollahzadeh
,
M.
,
Páscoa
,
J. C.
, and
Oliveira
,
P. J.
,
2012
, “
Numerical Modeling of Boundary Layer Control Using Dielectric Barrier Discharge
,”
Conferência Nac. Em Mecânica Dos Fluidos, Termodinâmica E Energ. MEFTE
,
Lisbon, Portugal
, May 28–29, pp.
1
10
.
23.
Kotsonis
,
M.
,
Ghaemi
,
S.
,
Veldhuis
,
L.
, and
Scarano
,
F.
,
2011
, “
Measurement of the Body Force Field of Plasma Actuators
,”
J. Phys. D
,
44
(
4
), p.
045204
.10.1088/0022-3727/44/4/045204
24.
Joussot
,
R.
,
Hong
,
D.
,
Rabat
,
H.
,
Boucinha
,
V.
, and
Assistant
,
P. T.
,
2010
, “
Thermal Characterization of a DBD Plasma Actuator: Dielectric Temperature Measurements Using Infrared Thermography
,”
AIAA Paper No. 2010-5102
.10.2514/6.2010-5102
25.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2018
, “
Heat Generation Mechanisms of DBD Plasma Actuators
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
55
65
.10.1016/j.expthermflusci.2017.09.005
26.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
C. M.
,
2017
, “
Experimntal Thermal Characterization of DBD Plasma Actuators
,”
ASME Paper No. IMECE2017–70541
.10.1115/IMECE2017-70541
27.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2018
, “
Experimental Analysis of Dielectric Barrier Discharge Plasma Actuators Thermal Characteristics Under External Flow Influence
,”
ASME J. Heat Transfer
,
140
(
10
), p.
102801
.10.1115/1.4040152
28.
Saddoughi
,
S. G.
,
Badding
,
B. J.
,
Giguere
,
P.
,
Boespflug
,
M. P.
,
Andrew
,
G.
, and
Bennett
,
J.
,
2011
, “
System and Method of Deicing and Prevention or Delay of Flow Separation Over Wind Turbine Blades
,” Patent No. USO08038397B2.
29.
Meng
,
X.
,
Cai
,
J.
,
Tian
,
Y.
,
Han
,
X.
,
Zhang
,
D.
, and
Hu
,
H.
,
2016
, “
Experimental Study of Anti-Icing and Deicing on a Cylinder by DBD Plasma Actuation
,”
AIAA Paper No. 2016-4019
.10.2514/6.2016-4019
30.
Cai
,
J.
,
Tian
,
Y.
,
Meng
,
X.
,
Han
,
X.
,
Zhang
,
D.
, and
Hu
,
H.
,
2017
, “
An Experimental Study of Icing Control Using DBD Plasma Actuator
,”
Exp. Fluids
,
58
(
8
), pp.
102
110
.10.1007/s00348-017-2378-y
31.
Zhou
,
W.
,
Liu
,
Y.
,
Hu
,
H.
,
Hu
,
H.
, and
Meng
,
X.
,
2018
, “
Utilization of Thermal Effect Induced by Plasma Generation for Aircraft Icing Mitigation
,”
AIAA J.
,
56
(
3
), pp.
1097
1104
.10.2514/1.J056358
32.
Liu
,
Y.
,
Kolbakir
,
C.
,
Hu
,
H.
, and
Hu
,
H.
,
2018
, “
A Comparison Study on the Thermal Effects in DBD Plasma Actuation and Electrical Heating for Aircraft Icing Mitigation
,”
Int. J. Heat Mass Transfer
,
124
, pp.
319
330
.10.1016/j.ijheatmasstransfer.2018.03.076
33.
Liu
,
Y.
,
Kolbakir
,
C.
,
Hu
,
H.
,
Meng
,
X.
, and
Hu
,
H.
,
2019
, “
An Experimental Study on the Thermal Effects of Duty-Cycled Plasma Actuation Pertinent to Aircraft Icing Mitigation
,”
Int. J. Heat Mass Transfer
,
136
, pp.
864
876
.10.1016/j.ijheatmasstransfer.2019.03.068
34.
Van Den Broecke
,
J.
,
2016
,
De-Icing Using ns-DBD Plasma Actuators
,
Delft University of Technology
,
Delft, The Netherlands
.
35.
Chen
,
J.
,
Liang
,
H.
,
Wu
,
Y.
,
Wei
,
B.
,
Zhao
,
G.
,
Tian
,
M.
, and
Xie
,
L.
,
2018
, “
Study on Anti-Icing Performance of NS-DBD Plasma Actuator
,”
Appl. Sci.
,
8
(
10
), pp.
1889
1904
.10.3390/app8101889
36.
Liu
,
Y.
,
Kolbakir
,
C.
,
Starikovskiy
,
A. Y.
,
Miles
,
R.
,
Hu
,
H.
, and
Experimental
,
A.
,
2019
, “
Study on the Thermal Characteristics of NS-DBD Plasma Actuation and Application for Aircraft Icing Mitigation
,”
Plasma Sources Sci. Technol.
,
28
(
1
), p.
014001
.10.1088/1361-6595/aaedf8
37.
Kolbakir
,
C.
,
Liu
,
Y.
, and
Hu
,
H.
,
2019
, “
An Experimental Study on the Effects of the Layout of DBD Plasma Actuators on Its Anti-/De-Icing Performance for Aircraft Icing Mitigation
,”
SAE Paper No. 2019-01-2033
.10.4271/2019-01-2033
38.
Kolbakir
,
C.
,
Hu
,
H.
,
Liu
,
Y.
,
Hu
,
H.
,
Associate
,
P.
, and
Jischke
,
M. C.
,
2019
, “
A Hybrid Anti-/De-Icing Strategy by Combining NS-DBD Plasma Actuator and Superhydrophobic Coating for Aircraft Icing Mitigation
,”
AIAA Paper No. 2019-0050
.10.2514/6.2019-0050
39.
Wei
,
B.
,
Wu
,
Y.
,
Liang
,
H.
,
Zhu
,
Y.
,
Chen
,
J.
,
Zhao
,
G.
,
Song
,
H.
,
Jia
,
M.
, and
Xu
,
H.
,
2019
, “
SDBD Based Plasma Anti-Icing: A Stream-Wise Plasma Heat Knife Configuration and Criteria Energy Analysis
,”
Int. J. Heat Mass Transfer
,
138
, pp.
163
172
.10.1016/j.ijheatmasstransfer.2019.04.051
40.
Abdelaziz
,
A. A.
,
Ishijima
,
T.
, and
Seto
,
T.
,
2018
, “
Humidity Effects on Surface Dielectric Barrier Discharge for Gaseous Naphthalene Decomposition
,”
Phys. Plasmas
,
25
(
4
), p.
043512
.10.1063/1.5020271
41.
Abdollahzadehsangroudi
,
M.
,
Pascoa Marques
,
J. C.
, and
Freire Rodrigues
,
F. M.
,
2019
, “
Ice Detection/Protection and Flow Control System Based on Printing of Dielectric Barrier Discharge Sliding Plasma Actuators
,” Patent No. US20190193863A1.
42.
Rashid
,
T.
,
Mughal
,
U. N.
, and
Virk
,
M. S.
,
2014
, “
Feasibility of Charge Transfer Based Atmospheric Ice Sensing Feasibility of Charge Transfer Based Atmospheric Ice Sensing
,”
SENSORCOMM 2014 Eighth International Conference on Sensor Technologies and Applications
, Lisbon, Portugal, Nov.
14
20
.
43.
Zhi
,
X.
,
Cho
,
H. C.
,
Bo
,
W.
,
Ahn
,
C. H.
,
Moon
,
H. S.
, and
Go
,
J. S.
,
2015
, “
Development of a Capacitive Ice Sensor to Measure Ice Growth in Real Time
,”
Sensors
,
15
(
3
), pp.
6688
6698
.10.3390/s150306688
44.
Kotsonis
,
M.
,
2015
, “
Diagnostics for Characterisation of Plasma Actuators
,”
Meas. Sci. Technol.
,
26
(
9
), p.
092001
.10.1088/0957-0233/26/9/092001
45.
Kriegseis
,
J.
,
Simon
,
B.
, and
Grundmann
,
S.
,
2016
, “
Towards in-Flight Applications? A Review on Dielectric Barrier Discharge-Based Boundary-Layer Control
,”
ASME Appl. Mech. Rev.
,
68
(
2
), p.
020802
.10.1115/1.4033570
46.
Leonov
,
S. B.
,
Adamovich
,
I. V.
,
Soloviev
,
V. R.
,
Takashima
,
K.
, and
Yin
,
Z.
,
2014
, “
Dynamics of Energy Coupling and Thermalization in Barrier Discharges Over Dielectric and Weakly Conducting Surfaces on μs to ms Time Scales
,”
J. Phys. D
,
47
(
46
), p.
465201
.10.1088/0022-3727/47/46/465201
You do not currently have access to this content.