Abstract

Based on the newly developed geometrical model of open-cell metal foam, pool boiling heat transfer in open-cell metal foam, considering thermal responses of foam skeletons, is investigated by the phase-change lattice Boltzmann method (LBM). Pool boiling patterns are obtained at different heat fluxes. The effects of pore density and foam thickness on bubble dynamics and pool boiling heat transfer are revealed. The results show that “bubble entrainment” promotes fluid mixing and bubble sliding inside metal foam. Based on force analysis, the sliding bubble is pinned on the heating surface and cannot lift off completely at high heat flux due to the increasing surface tension force. Pool boiling heat transfer coefficient decreases with increasing pore density and foam thickness due to high bubble escaping resistance.

References

References
1.
Xu
,
Z. G.
,
Qu
,
Z. G.
,
Zhao
,
C. Y.
, and
Tao
,
W. Q.
,
2011
, “
Pool Boiling Heat Transfer on Open-Celled Metallic Foam Sintered Surface Under Saturation Condition
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3856
3867
.10.1016/j.ijheatmasstransfer.2011.04.043
2.
Arbelaez
,
F.
,
Sett
,
S.
, and
Mahajan
,
R. L.
,
2000
, “
An Experimental Study on Pool Boiling of Saturated FC-72 in Highly Porous Aluminum Metal Foams
,”
34th National Heat Transfer Conference
,
Pittsburgh, PA
, Aug. 20–22.
3.
Xu
,
Z. G.
,
Qu
,
Z. G.
,
Zhao
,
C. Y.
, and
Tao
,
W. Q.
,
2014
, “
Experimental Correlation for Pool Boiling Heat Transfer on Metallic Foam Surface and Bubble Cluster Growth Behavior on Grooved Array Foam Surface
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1169
1182
.10.1016/j.ijheatmasstransfer.2014.06.037
4.
Athreya
,
B. P.
,
Mahajan
,
R. L.
, and
Sett
,
S.
,
2002
, “
Pool Boiling of FC-72 Over Metal Foams: Effect of Foam Orientation and Geometry
,”
AIAA Paper No. 2002–3214
.10.2514/6.2002-3214
5.
Yang
,
Y. P.
,
Ji
,
X. B.
, and
Xu
,
J. L.
,
2010
, “
Pool Boiling Heat Transfer on Copper Foam Covers With Water as Working Fluid
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1227
1237
.10.1016/j.ijthermalsci.2010.01.013
6.
Ji
,
X. B.
,
Xu
,
J. L.
,
Zhao
,
Z. W.
, and
Yang
,
W. L.
,
2013
, “
Pool Boiling Heat Transfer on Uniform and Non-Uniform Porous Coating Surfaces
,”
Exp. Therm Fluid Sci.
,
48
, pp.
198
212
.10.1016/j.expthermflusci.2013.03.002
7.
Xu
,
Z. G.
, and
Zhao
,
C. Y.
,
2016
, “
Enhanced Boiling Heat Transfer by Gradient Porous Metals in Saturated Pure Water and Surfactant Solutions
,”
Appl. Therm. Eng.
,
100
, pp.
68
77
.10.1016/j.applthermaleng.2016.02.016
8.
Huang
,
R. L.
,
Zhao
,
C. Y.
, and
Xu
,
Z. G.
,
2018
, “
Investigation of Bubble Behavior in Gradient Porous Media Under Pool Boiling Conditions
,”
Int. J. Multiphase Flow
,
103
, pp.
85
93
.10.1016/j.ijmultiphaseflow.2018.02.005
9.
Mazzocco
,
T.
,
Ambrosini
,
W.
,
Kommajosyula
,
R.
, and
Baglietto
,
E.
,
2018
, “
A Reassessed Model for Mechanistic Prediction of Bubble Departure and Lift Off Diameters
,”
Int. J. Heat Mass Transfer
,
117
, pp.
119
124
.10.1016/j.ijheatmasstransfer.2017.09.105
10.
Li
,
H. Y.
, and
Leong
,
K. C.
,
2011
, “
Experimental and Numerical Study of Single and Two-Phase Flow and Heat Transfer in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4904
4912
.10.1016/j.ijheatmasstransfer.2011.07.002
11.
Peralta
,
M.
,
Mendez
,
F.
, and
Bautista
,
O.
,
2016
, “
Phase-Change Transpiration Cooling in a Porous Medium: Determination of the Liquid/Two-Phase/Vapor Interfaces as a Problem of Eigenvalues
,”
Transp. Porous Media
,
112
(
1
), pp.
167
187
.10.1007/s11242-016-0637-7
12.
Xin
,
C. Y.
,
Rao
,
Z. H.
,
You
,
X. Y.
,
Song
,
Z. C.
, and
Han
,
D. T.
,
2014
, “
Numerical Investigation of Vapor Liquid Heat and Mass Transfer in Porous Media
,”
Energy Convers. Manag.
,
78
, pp.
1
7
.10.1016/j.enconman.2013.10.047
13.
Ray
,
S.
, and
Alomar
,
O. R.
,
2016
, “
Simulation of Liquid-Vapour Phase Change Process Inside Porous Media Using Modified Enthalpy Formulation
,”
Int. J. Therm. Sci.
,
105
, pp.
123
136
.10.1016/j.ijthermalsci.2016.02.014
14.
Alomar
,
O. R.
,
Mendes
,
M. A. A.
,
Trimis
,
D.
, and
Ray
,
S.
,
2017
, “
Numerical Simulation of Complete Liquid-Vapor Phase Change Process Inside Porous Media: A Comparison Between Local Thermal Equilibrium and Non-Equilibrium Models
,”
Int. J. Therm. Sci.
,
112
, pp.
222
241
.10.1016/j.ijthermalsci.2016.09.014
15.
Chen
,
L.
,
Kang
,
Q. J.
,
Mu
,
Y. T.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2014
, “
A Critical Review of the Pseudopotential Multiphase Lattice Boltzmann Model: Methods and Applications
,”
Int. J. Heat Mass Transfer
,
76
, pp.
210
236
.10.1016/j.ijheatmasstransfer.2014.04.032
16.
Gelissen
,
E. J.
,
van der Geld
,
C. W. M.
,
Kuipers
,
J. A. M.
, and
Kuerten
,
J. G. M.
,
2018
, “
Simulations of Droplet Collisions With a Diffuse Interface Model Near the Critical Point
,”
Int. J. Multiph. Flow
,
107
, pp.
208
220
.10.1016/j.ijmultiphaseflow.2018.06.001
17.
Gong
,
S.
, and
Cheng
,
P.
,
2013
, “
Lattice Boltzmann Simulation of Periodic Bubble Nucleation, Growth and Departure From a Heated Surface in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
64
, pp.
122
132
.10.1016/j.ijheatmasstransfer.2013.03.058
18.
Zhou
,
P.
,
Liu
,
W.
, and
Liu
,
Z. C.
,
2019
, “
Lattice Boltzmann Simulation of Nucleate Boiling in Micro-Pillar Structured Surface
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1
10
.10.1016/j.ijheatmasstransfer.2018.11.038
19.
Li
,
Q.
,
Yu
,
P.
,
Zhou
,
P.
, and
Yan
,
H. J.
,
2018
, “
Enhancement of Boiling Heat Transfer Using Hydrophilic-Hydrophobic Mixed Surfaces: A Lattice Boltzmann Study
,”
Appl. Therm. Eng.
,
132
, pp.
490
499
.10.1016/j.applthermaleng.2017.12.105
20.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foam
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.10.1016/S1359-6454(98)00031-7
21.
Plessis
,
P. D.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
22.
Weaire
,
D.
, and
Phelan
,
R.
,
1994
, “
A Counter-Example to Kelvin's Conjecture on Minimal Surfaces
,”
Phil. Mag. Lett.
,
69
(
2
), pp.
107
110
.10.1080/09500839408241577
23.
Thomson
,
W.
,
1887
, “
On the Division of Space With Minimum Partitional Area
,”
Acta Math.
,
11
(
0
), pp.
121
134
.10.1007/BF02612322
24.
Yang
,
X. H.
,
Wang
,
W. B.
,
Feng
,
S. S.
,
Jin
,
L. W.
,
Lu
,
T. J.
,
Chai
,
Y.
, and
Zhang
,
Q. L.
,
2016
, “
Thermal Analysis of Cold Storage: The Role of Porous Metal Foam
,”
Energy Procedia
,
88
, pp.
566
573
.10.1016/j.egypro.2016.06.079
25.
Wulf
,
R.
,
Mendes
,
M. A. A.
,
Skibina
,
V.
,
Zoubi
,
A. A.
,
Trimis
,
D.
,
Ray
,
S.
, and
Gross
,
U.
,
2014
, “
Experimental and Numerical Determination of Effective Thermal Conductivity of Open Cell FeCrAl-Alloy Metal Foams
,”
Int. J. Therm. Sci.
,
86
, pp.
95
103
.10.1016/j.ijthermalsci.2014.06.030
26.
Liu
,
H.
,
Yu
,
Q. N.
,
Qu
,
Z. G.
, and
Yang
,
R. Z.
,
2017
, “
Simulation and Analytical Validation of Forced Convection Inside Open-Cell Metal Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
234
245
.10.1016/j.ijthermalsci.2016.09.006
27.
Zhao
,
C. Y.
,
Dai
,
L. N.
,
Tang
,
G. H.
,
Qu
,
Z. G.
, and
Li
,
Z. Y.
,
2010
, “
Numerical Study of Natural Convection in Porous Media (Metals) Using Lattice Boltzmann Method (LBM)
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
925
934
.10.1016/j.ijheatfluidflow.2010.06.001
28.
Chen
,
Z. Q.
,
Gao
,
D. Y.
, and
Shi
,
J.
,
2014
, “
Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale
,”
Int. J. Heat Mass Transfer
,
72
, pp.
646
655
.10.1016/j.ijheatmasstransfer.2014.01.003
29.
Ren
,
Q. L.
,
Meng
,
F. L.
, and
Guo
,
P. H.
,
2018
, “
A Comparative Study of PCM Melting Process in a Heat Pipe-Assisted LHTES Unit Enhanced With Nanoparticles and Metal Foams by Immersed Boundary-Lattice Boltzmann Method at Pore-Scale
,”
Int. J. Heat Mass Transfer
,
121
, pp.
1214
1228
.10.1016/j.ijheatmasstransfer.2018.01.046
30.
Wang
,
M. R.
,
Wang
,
J. K.
,
Pan
,
N.
, and
Chen
,
S. Y.
,
2007
, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
,
75
(
3
), p.
036702
.10.1103/PhysRevE.75.036702
31.
Li
,
X. Y.
,
Ma
,
T.
,
Liu
,
J.
,
Zhang
,
H.
, and
Wang
,
Q. W.
,
2018
, “
Pore-Scale Investigation of Gravity Effects on Phase Change Heat Transfer Characteristics Using Lattice Boltzmann Method
,”
Appl. Energy
,
222
, pp.
92
103
.10.1016/j.apenergy.2018.03.184
32.
Qin
,
J.
,
Xu
,
Z. G.
,
Liu
,
Z. Y.
,
Lu
,
F.
, and
Zhao
,
C. Y.
,
2020
, “
Pore-Scale Investigation on Flow Boiling Heat Transfer Mechanisms in Open-Cell Metal Foam by LBM
,”
Int. Commun. Heat Mass Transfer
,
110
, p.
104418
.10.1016/j.icheatmasstransfer.2019.104418
33.
Li
,
Q.
,
Zhou
,
P.
, and
Yan
,
H. J.
,
2017
, “
Improved Thermal Lattice Boltzmann Model for Simulation of Liquid-Vapor Phase Change
,”
Phys. Rev. E
,
96
(
6
), p.
063303
.10.1103/PhysRevE.96.063303
34.
Kupershtokh
,
A. L.
,
Medvedev
,
D. A.
, and
Karpov
,
D. I.
,
2009
, “
On Equations of State in a Lattice Boltzmann Method
,”
Comput. Math. Appl.
,
58
(
5
), pp.
965
974
.10.1016/j.camwa.2009.02.024
35.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
Numerical Investigation of Droplet Motion and Coalescence by an Improved Lattice Boltzmann Model for Phase Transitions and Multiphase Flows
,”
Comput. Fluids
,
53
, pp.
93
104
.10.1016/j.compfluid.2011.09.013
36.
Martys
,
N. S.
, and
Chen
,
H.
,
1996
, “
Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method
,”
Phy. Rev. E
,
53
(
1
), pp.
743
750
.10.1103/PhysRevE.53.743
37.
Li
,
Q.
,
Kang
,
Q. J.
,
Francois
,
M. M.
,
He
,
Y. L.
, and
Luo
,
K. H.
,
2015
, “
Lattice Boltzmann Modeling of Boiling Heat Transfer: The Boiling Curve and the Effects of Wettability
,”
Int. J. Heat Mass Transfer
,
85
, pp.
787
796
.10.1016/j.ijheatmasstransfer.2015.01.136
38.
Yuan
,
P.
, and
Schaefer
,
L.
,
2006
, “
Equations of State in a Lattice Boltzmann Model
,”
Phys. Fluids
,
18
(
4
), p.
042101
.10.1063/1.2187070
39.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Numerical Simulation of Pool Boiling Heat Transfer on Smooth Surfaces With Mixed Wettability by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
80
, pp.
206
216
.10.1016/j.ijheatmasstransfer.2014.08.092
40.
Fritz
,
W.
,
1935
, “
Maximum Volume of Vapor Bubbles
,”
Phys. Z.
,
36
, pp.
379
384
.
41.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
2002
, “
A Cavity Activation and Bubble Growth Model of the Leidenfrost Point
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
864
874
.10.1115/1.1470487
42.
Chang
,
X. T.
,
Huang
,
H. B.
,
Cheng
,
Y. P.
, and
Lu
,
X. Y.
,
2019
, “
Lattice Boltzmann Study of Pool Boiling Heat Transfer Enhancement on Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
139
, pp.
588
599
.10.1016/j.ijheatmasstransfer.2019.05.041
43.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
213
.10.1115/1.3684339
44.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
45.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
85
, pp.
635
646
.10.1016/j.ijheatmasstransfer.2015.02.008
46.
Ma
,
K. T.
, and
Pan
,
C.
,
1999
, “
The Effect of Heated Wall Thickness and Materials on Nucleate Boiling at High Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
26
(
8
), pp.
1103
1114
.10.1016/S0735-1933(99)00101-3
47.
Golobic
,
I.
, and
Bergles
,
A. E.
,
1997
, “
Effects of Heater-Side Factors on the Saturated Pool Boiling Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
43
51
.10.1016/S0894-1777(96)00170-7
48.
Koosukuntla
,
N. R.
,
2011
, “
Towards Development of a Multiphase Simulation Model Using Lattice Boltzmann Method (LBM)
,” Master's thesis,
University of Toledo
,
Toledo, OH
.
49.
He
,
Y. L.
,
Wang
,
Y.
, and
Li
,
Q.
,
2009
, “
Lattice Boltzmann Method: Theory and Applications, Science
,”
Appl. Mech. Mater.
, 79, pp.
270
275
.10.4028/www.scientific.net/AMM.79.270
50.
Gong
,
S.
, and
Cheng
,
P.
,
2017
, “
Direct Numerical Simulations of Pool Boiling Curves Including Heater's Thermal Responses and the Effect of Vapor Phase's Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
61
71
.10.1016/j.icheatmasstransfer.2017.06.023
51.
Lou
,
Q.
,
Guo
,
Z. L.
, and
Shi
,
B. C.
,
2013
, “
Evaluation of Outflow Boundary Conditions for Two-Phase Lattice Boltzmann Equation
,”
Phys. Rev. E
,
87
(
6
), p.
063301
.10.1103/PhysRevE.87.063301
52.
Li
,
L. K.
,
Chen
,
C.
,
Mei
,
R. W.
, and
Klausner
,
J. F.
,
2014
, “
Conjugate Heat and Mass Transfer in the Lattice Boltzmann Equation Method
,”
Phys. Rev. E
,
89
(
4
), p.
043308
.10.1103/PhysRevE.89.043308
53.
Zhang
,
C. Y.
,
Cheng
,
P.
, and
Hong
,
F. J.
,
2016
, “
Mesoscale Simulation of Heater Size and Subcooling Effects on Pool Boiling Under Controlled Wall Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1331
1342
.10.1016/j.ijheatmasstransfer.2016.05.036
54.
Qiu
,
D.
, and
Dhir
,
V. K.
,
2002
, “
Experimental Study of Flow Pattern and Heat Transfer Associated With a Bubble Sliding on Downward Facing Inclined Surfaces
,”
Exp. Therm Fluid Sci.
,
26
(
6–7
), pp.
605
616
.10.1016/S0894-1777(02)00184-X
55.
Donnelly
,
B.
,
O'Reilly Meehan
,
R.
,
Nolan
,
K.
, and
Murray
,
D. B.
,
2015
, “
The Dynamics of Sliding Air Bubbles and the Effects on Surface Heat Transfer
,”
Int. J. Heat Mass Transfer
,
91
, pp.
532
542
.10.1016/j.ijheatmasstransfer.2015.07.133
56.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Bubble Nucleation Characteristics in Pool Boiling of a Wetting Liquid on Smooth and Rough Surfaces
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
249
260
.10.1016/j.ijmultiphaseflow.2009.12.004
57.
Krasowska
,
M.
, and
Malysa
,
K.
,
2007
, “
Kinetics of Bubble Collision and Attachment to Hydrophobic Solids: I. Effect of Surface Roughness
,”
Int. J. Miner. Process
,
81
(
4
), pp.
205
216
.10.1016/j.minpro.2006.05.003
58.
Fujasová-Zedníková
,
M.
,
Vobecká
,
L.
, and
Vejrazka
,
J.
,
2010
, “
Effect of Solid Material and Surfactant Presence on Interactions of Bubbles With Horizontal Solid Surface
,”
Can. J. Chem. Eng.
,
88
(
4
), pp.
473
481
.10.1002/cjce.20326
59.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.10.1016/0017-9310(93)80041-R
60.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.10.1063/1.4791682
61.
Moghaddam
,
S.
,
Ohadi
,
M.
, and
Qi
,
J.
,
2003
, “
Pool Boiling of Water and FC-72 on Copper and Graphite Foams
,”
ASME Paper No. IPACK2003-35316.
10.1115/IPACK2003-35316
You do not currently have access to this content.