Abstract

The slit pillar allows a small fraction of the mainstream flow through pillar to disturb the pillar wake zone fluid and eventually enhance the local and global heat transfer performances in microchannels. In this study, three-dimensional full-domain numerical simulations on the hydrodynamic and thermal characteristics of slit pillar array in microchannels are performed. Effects of slit angle and height over diameter (H/D) ratio on the fluid flow and heat transfer are studied. Comparisons with the nonslit pillar array are conducted on pressure drop, surface temperature, Nusselt number, and thermal performance index (TPI). Furthermore, the results are analyzed by using the entropy generation. As a result of secondary flows and enhanced convective heat transfer area, all cases at H/D ratio of 0.3 demonstrate enhanced heat transfer performance at an increase of 18.0–34.7% on Nusselt number, while a reduction of 3.4–12.9% on pressure drop in comparison to the criterion case at the same conditions. Among them, slit 15–15 deg shows the best comprehensive heat transfer performance. Due to the improved uniformities of velocity and temperature distributions, all slit pillar array microchannels show decreased entropy generation. The maximum entropy generation reduction can reach up to 15.8%, as compared with the criterion case at the same conditions. The above results fully demonstrate that the novel slit pillar array microchannel heat sink can be used as an effective approach for heat transfer enhancement.

References

References
1.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.10.1115/1.4005126
2.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.10.1115/1.4024354
3.
Smakulski
,
P.
, and
Pietrowicz
,
S.
,
2016
, “
A Review of the Capabilities of High Heat Flux Removal by Porous Materials, Microchannels and Spray Cooling Techniques
,”
Appl. Therm. Eng.
,
104
, pp.
636
646
.10.1016/j.applthermaleng.2016.05.096
4.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2016
, “
Hydrodynamic and Thermal Performance of Microchannels With Different In-Line Arrangements of Cylindrical Micropin Fins
,”
ASME J. Heat Transfer
,
138
(
12
), pp.
122403
122418
.10.1115/1.4034164
5.
Jung
,
J.
,
Kuo
,
C. J.
,
Peles
,
Y.
, and
Amitay
,
M.
,
2012
, “
The Flow Field Around a Micropillar Confined in a Microchannel
,”
Int. J. Heat Fluid Flow
,
36
, pp.
118
132
.10.1016/j.ijheatfluidflow.2012.04.009
6.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
122402
.10.1115/1.2970080
7.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.10.1016/j.ijheatmasstransfer.2010.07.017
8.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
.10.1016/j.applthermaleng.2014.12.006
9.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.10.1016/j.ijthermalsci.2013.11.010
10.
Zhang
,
J.-F.
,
Joshi
,
Y. K.
, and
Tao
,
W.-Q.
,
2017
, “
Single Phase Laminar Flow and Heat Transfer Characteristics of Microgaps With Longitudinal Vortex Generator Array
,”
Int. J. Heat Mass Transfer
,
111
, pp.
484
494
.10.1016/j.ijheatmasstransfer.2017.03.036
11.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2013
, “
Numerical Study of Fluid Flow and Heat Transfer in the Enhanced Microchannel With Oblique Fins
,”
ASME J. Heat Transfer
,
135
(
4
), p.
041901
.10.1115/1.4023029
12.
Mou
,
N.
,
Jiun Lee
,
Y.
,
Seng Lee
,
P.
,
Singh
,
P. K.
, and
Khan
,
S. A.
,
2016
, “
Investigations on the Influence of Flow Migration on Flow and Heat Transfer in Oblique Fin Microchannel Array
,”
ASME J. Heat Transfer
,
138
(
10
), p.
102403
.10.1115/1.4033540
13.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
TCPT-2006-096.R2: Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.10.1109/TCAPT.2007.906334
14.
Hua
,
J.
,
Li
,
G.
,
Zhao
,
X.
,
Li
,
Q.
, and
Hu
,
J.
,
2016
, “
Study on the Flow Resistance Performance of Fluid Cross Various Shapes of Micro-Scale Pin Fin
,”
Appl. Therm. Eng.
,
107
, pp.
768
775
.10.1016/j.applthermaleng.2016.07.048
15.
Wang
,
J.
, and
Dong
,
Y.
,
2017
, “
The Numerical Investigation of Flow and Heat Transfer Characteristics of Flow Past a Slit-Cylinder
,”
Sci. China. Technol. Sci.
,
60
(
4
), pp.
602
612
.10.1007/s11431-016-0375-8
16.
Ma
,
H.-L.
, and
Kuo
,
C.-H.
,
2016
, “
Control of Boundary Layer Flow and Lock-on of Wake Behind a Circular Cylinder With a Normal Slit
,”
Eur. J. Mech. B
,
59
, pp.
99
114
.10.1016/j.euromechflu.2016.05.001
17.
Olsen
,
J. F.
, and
Rajagopalan
,
S.
,
2000
, “
Vortex Shedding Behind Modified Circular Cylinders
,”
J. Wind Eng. Ind. Aerodyn.
,
86
(
1
), pp.
55
63
.10.1016/S0167-6105(00)00003-9
18.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Circular Cylinder With Slit
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
287
301
.10.1016/j.expthermflusci.2016.11.025
19.
Ordia
,
L.
,
Venugopal
,
A.
,
Agrawal
,
A.
, and
Prabhu
,
S. V.
,
2017
, “
Vortex Shedding Characteristics of a Cylinder With a Parallel Slit Placed in a Circular Pipe
,”
J. Visualization
,
20
(
2
), pp.
263
275
.10.1007/s12650-016-0398-y
20.
Elcock
,
D.
,
Jung
,
J.
,
Kuo
,
C. J.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Interaction of a Liquid Flow Around a Micropillar With a Gas Jet
,”
Phys. Fluids
,
23
(
12
), p.
122001
.10.1063/1.3662436
21.
Elcock
,
D.
,
Honkanen
,
M.
,
Kuo
,
C.
,
Amitay
,
M.
, and
Peles
,
Y.
,
2011
, “
Bubble Dynamics and Interactions With a Pair of Micro Pillars in Tandem
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
440
452
.10.1016/j.ijmultiphaseflow.2010.12.004
22.
Houshmand
,
F.
, and
Peles
,
Y.
,
2014
, “
Impact of Flow Dynamics on the Heat Transfer of Bubbly Flow in a Microchannel
,”
ASME J. Heat Transfer
,
136
(
2
), p.
022902
.10.1115/1.4025435
23.
Ebrahimi
,
A.
,
Rikhtegar
,
F.
,
Sabaghan
,
A.
, and
Roohi
,
E.
,
2016
, “
Heat Transfer and Entropy Generation in a Microchannel With Longitudinal Vortex Generators Using Nanofluids
,”
Energy
,
101
, pp.
190
201
.10.1016/j.energy.2016.01.102
24.
Cruz-Duarte
,
J. M.
,
Garcia-Perez
,
A.
,
Amaya-Contreras
,
I. M.
, and
Correa-Cely
,
C. R.
,
2016
, “
Designing a Microchannel Heat Sink With Colloidal Coolants Through the Entropy Generation Minimisation Criterion and Global Optimisation Algorithms
,”
Appl. Therm. Eng.
,
100
, pp.
1052
1062
.10.1016/j.applthermaleng.2016.02.109
25.
Helvaci
,
H. U.
, and
Khan
,
Z. A.
,
2017
, “
Heat Transfer and Entropy Generation Analysis of HFE 7000 Based Nanorefrigerants
,”
Int. J. Heat Mass Transfer
,
104
, pp.
318
327
.10.1016/j.ijheatmasstransfer.2016.08.053
26.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2015
, “
Exergy Analysis and Performance Evaluation of Flow and Heat Transfer in Different Micro Heat Sinks With Complex Structure
,”
Int. J. Heat Mass Transfer
,
84
, pp.
293
303
.10.1016/j.ijheatmasstransfer.2015.01.039
27.
Maganti
,
L. S.
, and
Dhar
,
P.
,
2017
, “
Consequences of Flow Configuration and Nanofluid Transport on Entropy Generation in Parallel Microchannel Cooling Systems
,”
Int. J. Heat Mass Transfer
,
109
, pp.
555
563
.10.1016/j.ijheatmasstransfer.2017.02.036
28.
Purohit
,
N.
,
Jakhar
,
S.
,
Gullo
,
P.
, and
Dasgupta
,
M. S.
,
2018
, “
Heat Transfer and Entropy Generation Analysis of Alumina/Water Nanofluid in a Flat Plate PV/T Collector Under Equal Pumping Power Comparison Criterion
,”
Renewable Energy
,
120
, pp.
14
22
.10.1016/j.renene.2017.12.066
29.
Cheng
,
X.
, and
Wu
,
H.
,
2020
, “
Heat Transfer Enhancement for Wake Zone Using Slit Pillar in Microchannel Heat Sinks
,”
ASME J. Heat Transfer
,
142
(
1
), p.
012502
.10.1115/1.4045072
30.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Laminar Flow and Heat Transfer Characteristics of Interrupted Microchannel Heat Sink With Ribs in the Transverse Microchambers
,”
Int. J. Therm. Sci.
,
110
, pp.
1
11
.10.1016/j.ijthermalsci.2016.06.029
31.
Yu
,
X.
,
Woodcock
,
C.
,
Plawsky
,
J.
, and
Peles
,
Y.
,
2016
, “
An Investigation of Convective Heat Transfer in Microchannel With Piranha Pin Fin
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1125
1132
.10.1016/j.ijheatmasstransfer.2016.07.069
32.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2017
, “
Hydrodynamic and Thermal Performance of Microchannels With Different Staggered Arrangements of Cylindrical Micro Pin Fins
,”
ASME J. Heat Transfer
,
139
(
6
), p.
062402
.10.1115/1.4035655
33.
Li
,
Y. F.
,
Xia
,
G. D.
,
Ma
,
D. D.
,
Jia
,
Y. T.
, and
Wang
,
J.
,
2016
, “
Characteristics of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Triangular Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transfer
,
98
, pp.
17
28
.10.1016/j.ijheatmasstransfer.2016.03.022
34.
Yeom
,
T.
,
Simon
,
T.
,
Zhang
,
T.
,
Zhang
,
M.
,
North
,
M.
, and
Cui
,
T.
,
2016
, “
Enhanced Heat Transfer of Heat Sink Channels With Micro Pin Fin Roughened Walls
,”
Int. J. Heat Mass Transfer
,
92
, pp.
617
627
.10.1016/j.ijheatmasstransfer.2015.09.014
35.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
36.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Numerical Study of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Offset Ribs on Sidewalls
,”
Appl. Therm. Eng.
,
92
, pp.
32
41
.10.1016/j.applthermaleng.2015.09.071
37.
Shalchi-Tabrizi
,
A.
, and
Seyf
,
H. R.
,
2012
, “
Analysis of Entropy Generation and Convective Heat Transfer of Al2O3 Nanofluid Flow in a Tangential Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4366
437
.10.1016/j.ijheatmasstransfer.2012.04.005
You do not currently have access to this content.