Abstract

Quench front characteristics and flow physics have been observed for single jet impingement using de-ionized (DI) water and various oxide-based nanofluids. Quench front velocity, shape, intensities of sputtering, and postquench front phenomenon have been observed through the high-speed camera. Quench front velocity is higher in the case of nanofluids than DI water due to the presence of nanoparticles in nanofluids. However, quench front shape also differs in the case of nanofluids due to the rupture of the boundary layer, which depends on agglomeration characteristics and the nanomicroporous layer formed on the solid surface of the heater. A better understanding of quench behavior, for a very low concentration of nanofluids, will make it a viable technology for emergency core cooling system (ECCS) for upcoming nuclear reactors in India.

References

1.
Ciloglu
,
D.
, and
Bolukbasi
,
A.
,
2011
, “
The Quenching Behavior of Aqueous Nanofluids Around Rods With High Temperature
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2519
2527
.10.1016/j.nucengdes.2011.04.023
2.
Khoshmehr
,
H. H.
,
Saboonchi
,
A.
, and
Shafii
,
M. B.
,
2014
, “
The Quenching of Silver Rod in Boiling Carbon Nano Tube–Water Nanofluid
,”
Int. J. Therm. Sci.
,
75
, pp.
95
104
.10.1016/j.ijthermalsci.2013.07.022
3.
Modak
,
M.
,
Chougule
,
S. S.
, and
Sahu
,
S. K.
,
2018
, “
An Experimental Investigation on Heat Transfer Characteristics of Hot Surface by Using CuO–Water Nanofluids in Circular Jet Impingement Cooling
,”
ASME J. Heat Transfer
,
140
(
1
), p.
012401
.10.1115/1.4037396
4.
Agrawal
,
M. K.
, and
Sahu
,
S. K.
,
2016
, “
Analysis of Three-Region Conduction-Controlled Rewetting of a Hot Surface by Variational Method
,”
Heat Transfer Eng.
,
37
(
9
), pp.
763
773
.10.1080/01457632.2015.1080563
5.
Patra
,
N.
,
Gupta
,
V.
,
Singh
,
R.
,
Singh
,
R.
,
Ghosh
,
P.
, and
Nayak
,
A.
,
2017
, “
An Experimental Analysis of Quenching of Continuously Heated Vertical Rod With Aqueous Al2O3 Nanofluid
,”
Resour. Effic. Technol.
,
3
(
4
), pp.
378
384
.10.1016/j.reffit.2017.02.006
6.
Miyasaka
,
Y.
, and
Inada
,
S.
,
1980
, “
The Effect of Pure Forced Convection on the Boiling Heat Transfer Between a Two-Dimensional Subcooled Water Jet and a Heated Surface
,”
J. Chem. Eng. Jpn.
,
13
(
1
), pp.
22
28
.10.1252/jcej.13.22
7.
Stevens
,
J.
, and
Webb
,
B.
,
1991
, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
,
113
(
1
), pp.
71
78
.10.1115/1.2910554
8.
Mozumder
,
A. K.
,
Woodfield
,
P. L.
,
Islam
,
M. A.
, and
Monde
,
M.
,
2007
, “
Maximum Heat Flux Propagation Velocity During Quenching by Water Jet Impingement
,”
Int. J. Heat Mass Transfer
,
50
(
7–8
), pp.
1559
1568
.10.1016/j.ijheatmasstransfer.2006.08.035
9.
Katti
,
V.
, and
Prabhu
,
S.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4480
4495
.10.1016/j.ijheatmasstransfer.2007.12.024
10.
Shires
,
G. L.
,
Pickering
,
A.
, and
Blacker
,
P.
,
1964
, “
Film Cooling of Vertical Fuel Rods
,” United Kingdom at Energy Authority, UK, Report No. AEEW-R-343, Ref. No. 38048780.
11.
Bennett
,
A.
,
Hewitt
,
G.
,
Kearsey
,
H.
, and
Keeys
,
R.
,
1966
, “
The Wetting of Hot Surfaces by Water in a Steam Environment at High Pressures
,” UKAEA, UK, Report No. AERE-5146.
12.
Yamanouchi
,
A.
,
1968
, “
Effects of Core Spray Cooling at Stationary State After Loss of Coolant Accident
,”
J. Nucl. Sci. Technol.
,
5
(
10
), pp.
498
508
.10.1080/18811248.1968.9732504
13.
Yoshioka
,
K.
, and
Hasegawa
,
S.
,
1970
, “
A Correlation in Displacement Velocity of Liquid Film Boundary Formed on a Heated Vertical Surface in Emergency Cooling
,”
J. Nucl. Sci. Technol.
,
7
(
8
), pp.
418
425
.10.1080/18811248.1970.9734711
14.
Elliott
,
D.
, and
Rose
,
P.
,
1971
, “
Quenching of a Heated Zircaloy Surface by a Film of Water in a Steam Environment at Pressures Up to 53 Bar
,” Office of Scientific and Technical Information, Oak Ridge, TN, Report No. AEEW-M-1027, NSA-28-018158.
15.
Duffey
,
R.
, and
Porthouse
,
D.
,
1973
, “
The Physics of Rewetting in Water Reactor Emergency Core Cooling
,”
Nucl. Eng. Des.
,
25
(
3
), pp.
379
394
.10.1016/0029-5493(73)90033-2
16.
Thompson
,
T.
,
1972
, “
Simulated Bottom-Flooding Emergency Cooling of a Close-Spaced Rod Bundle
,”
Proceedings European Two-Phase Flow Meeting
, Casaccia, Rome, June 6.
17.
Riedle
,
K.
, and
Winkler
,
F.
,
1972
, “
ECC-Reflooding Experiments With a 340-Rod Bundle
,” Report No. MRR-115(VOL1), Reference No. 4091392.
18.
Martini
,
R.
, and
Premoli
,
A.
,
1973
, “
Bottom Flooding Experiments With Simple Geometries Under Different ECC Conditions
,” Report No. MRR-115(VOL1), Reference No. 4091388.
19.
Andreoni
,
D.
, and
Courtaud
,
M.
,
1972
, “
Study of Heat Transfer During the Reflooding of a Single Rod Test Section
,” Report No. MRR-115 (VOL1), Reference No. 5094175.
20.
Kim
,
H.
,
DeWitt
,
G.
,
McKrell
,
T.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2009
, “
On the Quenching of Steel and Zircaloy Spheres in Water-Based Nanofluids With Alumina, Silica and Diamond Nanoparticles
,”
Int. J. Multiphase Flow
,
35
(
5
), pp.
427
438
.10.1016/j.ijmultiphaseflow.2009.02.004
21.
Lotfi
,
H.
, and
Shafii
,
M.
,
2009
, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2215
2220
.10.1016/j.ijthermalsci.2009.04.009
22.
Kumar
,
T. P.
,
2013
, “
Influence of Steel Grade on Surface Cooling Rates and Heat Flux During Quenching
,”
J. Mater. Eng. Perform.
,
22
(
7
), pp.
1848
1854
.10.1007/s11665-013-0552-9
23.
Lee
,
S. W.
,
Kim
,
S. M.
,
Park
,
S. D.
, and
Bang
,
I. C.
,
2013
, “
Study on the Cooling Performance of Sea Salt Solution During Reflood Heat Transfer in a Long Vertical Tube
,”
Int. J. Heat Mass Transfer
,
60
, pp.
105
113
.10.1016/j.ijheatmasstransfer.2012.12.046
24.
Hsu
,
S. H.
,
Ho
,
Y. H.
,
Ho
,
M. X.
,
Wang
,
J. C.
, and
Pan
,
C.
,
2015
, “
On the Formation of Vapor Film During Quenching in De-Ionized Water and Elimination of Film Boiling During Quenching in Natural Sea Water
,”
Int. J. Heat Mass Transfer
,
86
, pp.
65
71
.10.1016/j.ijheatmasstransfer.2015.02.049
25.
Paul
,
G.
,
Das
,
P. K.
, and
Manna
,
I.
,
2015
, “
Rewetting of Vertical Pipes by Bottom Flooding Using Nanofluid as a Coolant
,”
ASME J. Heat Transfer
,
137
(
12
), p.
121009
.10.1115/1.4030925
26.
Sahu
,
S.
,
Das
,
P.
, and
Bhattacharyya
,
S.
,
2010
, “
An Experimental Investigation on the Quenching of a Hot Vertical Heater by Water Injection at High Flow Rate
,”
Nucl. Eng. Des.
,
240
(
6
), pp.
1558
1568
.10.1016/j.nucengdes.2010.02.028
27.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer Int. J.
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
28.
Kumar
,
T. P.
, and
Kamath
,
H.
,
2004
, “
Estimation of Multiple Heat-Flux Components at the Metal/Mold Interface in Bar and Plate Aluminum Alloy Castings
,”
Metall. Mater. Trans. B
,
35
(
3
), pp.
575
585
.10.1007/s11663-004-0056-y
29.
Babu
,
K.
, and
Kumar
,
T. P.
,
2011
, “
Estimation and Analysis of Surface Heat Flux During Quenching in CNT Nanofluids
,”
ASME J. Heat Transfer
,
133
(
7
), p.
071501
.10.1115/1.4003572
30.
Babu
,
K.
, and
Kumar
,
T. P.
,
2010
, “
Mathematical Modeling of Surface Heat Flux During Quenching
,”
Metall. Mater. Trans. B
,
41
(
1
), pp.
214
224
.10.1007/s11663-009-9319-y
31.
Buczek
,
A.
, and
Telejko
,
T.
,
2013
, “
Investigation of Heat Transfer Coefficient During Quenching in Various Cooling Agents
,”
Int. J. Heat Fluid Flow
,
44
, pp.
358
364
.10.1016/j.ijheatfluidflow.2013.07.004
32.
Wolf
,
D.
,
Incropera
,
F.
, and
Viskanta
,
R.
,
1993
, “
Jet Impingement Boiling
,”
Advances in Heat Transfer
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
1
132
.
33.
Mozumder
,
A. K.
,
2006
, “
Thermal and Hydrodynamic Characteristics of Jet Impingement Quenching for High Temperature Surface
,” Ph.D. thesis,
Graduate School of Science and Engineering, Saga University
, Japan.
34.
Holman
,
J.
,
1966
,
Experimental Methods for Engineers
,
McGraw-Hill Book
,
New York
.
35.
Patil
,
N.
,
Das
,
P.
,
Bhattacharyya
,
S.
, and
Sahu
,
S.
,
2012
, “
An Experimental Assessment of Cooling of a 54-Rod Bundle by in-Bundle Injection
,”
Nucl. Eng. Des.
,
250
, pp.
500
511
.10.1016/j.nucengdes.2012.05.017
36.
Gupta
,
V.
,
Patra
,
N.
,
Jha
,
V. K.
,
Ghosh
,
P.
, and
Singh
,
R.
,
2016
, “
Numerical Investigation for Quenching Behavior of a Dry Heated Rod Using Nanofluid
,”
Multiphase Sci. Technol.
,
28
(
3
), pp.
227
245
.10.1615/MultScienTechn.2018024793
37.
Dasgupta
,
A.
,
Chandraker
,
D.
,
Nayak
,
A.
,
Kulkarni
,
P.
,
Chinchole
,
A.
, and
Rao
,
A. R.
,
2017
, “
Demonstration of Adequacy of Passive in-Bundle ECC Injection of AHWR
,”
Ann. Nucl. Energy
,
102
, pp.
11
22
.10.1016/j.anucene.2016.12.005
38.
Wang
,
B.
,
Lin
,
D.
,
Xie
,
Q.
,
Wang
,
Z.
, and
Wang
,
G.
,
2016
, “
Heat Transfer Characteristics During Jet Impingement on a High-Temperature Plate Surface
,”
Appl. Therm. Eng.
,
100
, pp.
902
910
.10.1016/j.applthermaleng.2016.02.054
39.
Vader
,
D.
,
Incropera
,
F.
, and
Viskanta
,
R.
,
1992
, “
Convective Nucleate Boiling on a Heated Surface Cooled by an Impinging, Planar Jet of Water
,”
ASME J. Heat Transfer
,
114
(
1
), pp.
152
160
.10.1115/1.2911241
40.
Yao
,
S.
, and
Henry
,
R.
,
1976
, “
Hydrodynamic Instability Induced Liquid-Solid Contacts in Film Boiling
,”
ASME
Paper No. 761107-22.10.1115/761107-22
41.
Jakob
,
M.
,
1949
,
Heat Transfer
,
Wiley
,
New York
, pp.
21
23
.
42.
Gaertner
,
R. F.
, and
Westwater
,
J.
,
1960
, “
Population of Active Sites in Nucleate Boiling Heat Transfer
,”
Chem. Eng. Prog. Symp. Series
,
56
(
30
), pp. 39–48.
43.
Jiji
,
L. T.
, and
Clark
,
J. A.
,
1962
, “
Incipient Boiling in Forced Convection Channel Flow
,”
ASME
Paper No. 62 W A-202.10.1115/62 W A-202
44.
Barber
,
J.
,
Brutin
,
D.
, and
Tadrist
,
L.
,
2011
, “
A Review on Boiling Heat Transfer Enhancement With Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
280
.10.1186/1556-276X-6-280
45.
Bang
,
I. C.
, and
Chang
,
S. H.
,
2005
, ” “
Boiling Heat Transfer Performance and Phenomenon of Al2O3-Water Nanofluids From a Plain Surface in Pool
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2407
2419
.10.1016/j.ijheatmasstransfer.2004.12.047
You do not currently have access to this content.