Abstract

The piston in reciprocating engine would be badly ablated under severe knock. However, the mechanism of the detonation-induced thermal ablation of piston is still unclear. A detonation bomb device (DBD) was used to measure the thermal load of piston under detonation. A test specimen mounted on the detonation bomb acts as a piston to bear the detonation load. Transient thermal numerical analysis was performed using the finite element method. Temperature of the specimen and in-cylinder pressure were collected synchronously. A method for estimating wall heat flux under detonation was proposed. Results showed that the heat received by the specimen accounts for about 20.9% of the total heat released by the mixture in this research. Under continuous detonations, the heat of the surface layer could not be conducted to the interior in a short time, leading to a rapid rise in surface temperature. The overall temperature rise of the specimen limits the heat dissipation of the specimen surface layer, resulting in the specimen being ablated by the over-temperature and over-pressure. Piston thermal ablation by detonation is verified and reappeared in the detonation bomb. The thermal load of the piston is largest under theoretical equivalent ratio.

References

References
1.
Wang
,
Z.
,
Liu
,
H.
, and
Reitz
,
R. D.
,
2017
, “
Knocking Combustion in Spark-Ignition Engines
,”
Prog. Energy Combust. Sci.
,
61
, pp.
78
112
.10.1016/j.pecs.2017.03.004
2.
Wang
,
Z.
,
Liu
,
H.
,
Song
,
T.
,
Xu
,
Y.
,
Wang
,
J.
,
Li
,
D.
, and
Chen
,
T.
,
2014
, “
Investigation on Pre-Ignition and Super-Knock in Highly Boosted Gasoline Direct Injection Engines
,”
SAE
Paper No. 2014-01-1212
. 10. 10.4271/2014-01-1212
3.
Yao
,
C.
,
Yao
,
A.
, and
Xu
,
H.
,
2015
,
Mechanism of Components Damaged by Internal Combustion Engine Knocking
,
Science Press
,
Beijing, China
.
4.
Zahdeh
,
A.
,
Rothenberger
,
P.
,
Nguyen
,
W.
,
Anbarasu
,
M.
,
Schmuck-Soldan
,
S.
,
Schaefer
,
J.
, and
Goebel
,
T.
,
2011
, “
Fundamental Approach to Investigate Pre-Ignition in Boosted SI Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
246
273
.10.4271/2011-01-0340
5.
Okada
,
Y.
,
Miyashita
,
S.
,
Izumi
,
Y.
, and
Hayakawa
,
Y.
,
2014
, “
Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine
,”
SAE Int. J. Engines
,
7
(
2
), pp.
584
594
.10.4271/2014-01-1218
6.
Amann
,
M.
,
Mehta
,
D.
, and
Alger
,
T.
,
2011
, “
Engine Operating Condition and Gasoline Fuel Composition Effects on Low-Speed Pre-Ignition in High-Performance Spark Ignited Gasoline Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
274
285
.10.4271/2011-01-0342
7.
Takeuchi
,
K.
,
Fujimoto
,
K.
,
Hirano
,
S.
, and
Yamashita
,
M.
,
2012
, “
Investigation of Engine Oil Effect on Abnormal Combustion in Turbocharged Direct Injection - Spark Ignition Engines
,”
SAE Int. J. Fuels Lubr.
,
5
(
3
), pp.
1017
1024
.10.4271/2012-01-1615
8.
Xu
,
H.
,
Yao
,
A.
, and
Yao
,
C.
,
2015
, “
The Influence of Different Auto-Ignition Modes on the Behavior of Pressure Waves
,”
Energy Convers. Manag.
,
106
, pp.
73
83
.10.1016/j.enconman.2015.09.024
9.
Wang
,
Z.
,
Qi
,
Y.
,
Liu
,
H.
,
Zhang
,
P.
,
He
,
X.
, and
Wang
,
J.
,
2016
, “
Shock Wave Reflection Induced Detonation (SWRID) Under High Pressure and Temperature Condition in Closed Cylinder
,”
Shock Waves
,
26
(
5
), pp.
687
691
.10.1007/s00193-016-0677-5
10.
Pan
,
J.
,
Hu
,
Z.
,
Wei
,
H.
,
Pan
,
M.
,
Liang
,
X.
,
Shu
,
G.
, and
Zhou
,
L.
,
2019
, “
Understanding Strong Knocking Mechanism Through High-Strength Optical Rapid Compression Machines
,”
Combust. Flame
,
202
, pp.
1
15
.10.1016/j.combustflame.2019.01.004
11.
Xu
,
H.
,
Gao
,
J.
,
Yao
,
A.
, and
Yao
,
C.
,
2018
, “
The Effect of the Energy Convergence and Energy Dissipation on the Formation of Severe Knock
,”
Appl. Energy
,
228
, pp.
1243
1254
.10.1016/j.apenergy.2018.07.013
12.
Xu
,
H.
,
Yao
,
A.
,
Yao
,
C.
, and
Gao
,
J.
,
2017
, “
Investigation of Energy Transformation and Damage Effect Under Severe Knock of Engines
,”
Appl. Energy
,
203
, pp.
506
521
.10.1016/j.apenergy.2017.06.065
13.
Xu
,
H.
,
Yao
,
A.
,
Yao
,
C.
, and
Gao
,
J.
,
2016
, “
Energy Convergence of Shock Waves and Its Destruction Mechanism in Cone-Roof Combustion Chambers
,”
Energy Convers. Manag.
,
127
, pp.
342
354
.10.1016/j.enconman.2016.09.034
14.
Xu
,
H.
,
Gao
,
J.
,
Yao
,
A.
, and
Yao
,
C.
,
2018
, “
The Relief of Energy Convergence of Shock Waves by Using the Concave Combustion Chamber Under Severe Knock
,”
Energy Convers. Manag.
,
162
, pp.
293
306
.10.1016/j.enconman.2018.02.024
15.
Gao
,
J.
,
Yao
,
A.
,
Feng
,
L.
,
Xu
,
H.
, and
Yao
,
C.
,
2019
, “
Experimental Investigation on the Failures of Engine Piston Subjected to Severe Knock
,”
SAE
Paper No. 2019-01–0705. 10.4271/2019-01-0705
16.
Nates
,
R. J.
, and
Yates
,
A. D. B.
,
1994
, “
Knock Damage Mechanisms in Spark-Ignition Engines
,”
SAE
Paper No. 942064
. 10.4271/942064
17.
Fitton
,
J.
, and
Nates
,
R.
,
1996
, “
Knock Erosion in Spark-Ignition Engines
,” .
SAE
Paper No. 962102
. 10.4271/962102
18.
Nates
,
R. J.
,
2000
, “
Thermal Stresses Induced by Knocking Combustion in Spark-Ignition Engines
,”
SAE
Paper No. 2000-01-1238
. 10.4271/2000-01-1238
19.
Ceschini
,
L.
,
Morri
,
A.
,
Balducci
,
E.
,
Cavina
,
N.
,
Rojo
,
N.
,
Calogero
,
L.
, and
Poggio
,
L.
,
2017
, “
Experimental Observations of Engine Piston Damage Induced by Knocking Combustion
,”
Mater. Des.
,
114
, pp.
312
325
.10.1016/j.matdes.2016.11.015
20.
Balducci
,
E.
,
Ceschini
,
L.
,
Rojo
,
N.
,
Cavina
,
N.
,
Cevolani
,
R.
, and
Barichello
,
M.
,
2018
, “
Knock Induced Erosion on Al Pistons: Examination of Damage Morphology and Its Causes
,”
Eng. Fail. Anal.
,
92
, pp.
12
31
.10.1016/j.engfailanal.2018.05.002
21.
Wang
,
Y.
,
Wang
,
K.
,
Fan
,
W.
,
He
,
J.
,
Zhang
,
Y.
,
Zhang
,
Q.
, and
Yao
,
K.
,
2017
, “
Experimental Study on the Wall Temperature and Heat Transfer of a Two-Phase Pulse Detonation Rocket Engine
,”
Appl. Therm. Eng.
,
114
, pp.
387
393
.10.1016/j.applthermaleng.2016.12.001
22.
Zhou
,
S.
,
Ma
,
H.
,
Liu
,
C.
,
Zhou
,
C.
, and
Liu
,
D.
,
2018
, “
Experimental Investigation on the Temperature and Heat-Transfer Characteristics of Rotating-Detonation-Combustor Outer Wall
,”
Int. J. Hydrogen Energy
,
43
(
45
), pp.
21079
21089
.10.1016/j.ijhydene.2018.09.137
23.
Saracoglu
,
B. H.
,
Olcucuoglu
,
B.
, and
Saracoglu
,
B. H.
,
2018
, “
A Preliminary Preliminary Heat Heat Transfer Transfer Analysis Analysis of of Pulse Pulse Detonation Detonation Engines Engines
,”
Transp. Res. Procedia
,
29
, pp.
279
288
.10.1016/j.trpro.2018.02.025
24.
Zhang
,
B.
, and
Bai
,
C.
,
2013
, “
Critical Energy of Direct Detonation Initiation in Gaseous Fuel–Oxygen Mixtures
,”
Saf. Sci.
,
53
, pp.
153
159
.10.1016/j.ssci.2012.09.013
25.
Broekaert
,
S.
,
Demuynck
,
J.
,
De Cuyper
,
T.
,
De Paepe
,
M.
, and
Verhelst
,
S.
,
2016
, “
Heat Transfer in Premixed Spark Ignition Engines Part I: Identification of the Factors Influencing Heat Transfer
,”
Energy
,
116
, pp.
380
391
.10.1016/j.energy.2016.08.065
26.
De Cuyper
,
T.
,
Broekaert
,
S.
,
Chana
,
K.
,
De Paepe
,
M.
, and
Verhelst
,
S.
,
2017
, “
Evaluation of Empirical Heat Transfer Models Using TFG Heat Flux Sensors
,”
Appl. Therm. Eng.
,
118
, pp.
561
569
.10.1016/j.applthermaleng.2017.02.049
You do not currently have access to this content.