Abstract

The heat generated by microprocessors has an extremely nonuniform spatial distribution with hotspots that have heat fluxes several times larger than the background flux. Hence, for an accurate design of microchannel heat sinks used for cooling of micro-electronic devices, models are required that can take such a nonuniform distribution of wall heat flux into account. In this study, analytical solutions are obtained for hydrodynamically fully developed but thermally developing mixed electro-osmotic and pressure-driven (PD) flow in a rectangular microchannel with a peripherally uniform but axially nonuniform distribution of the wall heat flux. It is assumed that the heat flux is applied over a finite length, to mimic a physically more realistic situation, and the Péclet number is small so that lateral temperature variations are negligible as compared to the axial variations of temperature. By comparing the results with those of full numerical simulations for exponential (EHF), sinusoidal (SHF), and stepwise (STHF) distributions of wall heat flux, it is demonstrated that the solutions obtained are accurate up to a Péclet number of 10. Fortunately, this value is larger than the maximum Péclet number of electro-osmotic microflows. Furthermore, it is shown that smoother distributions of wall heat flux give rise to higher heat transfer rates. The model developed in this study can pave the way for modeling of hotspots in more complicated microfluidic devices.

References

1.
Escobar
,
R. A.
, and
Amon
,
C. H.
,
2007
, “
Influence of Phonon Dispersion on Transient Thermal Response of Silicon-on-Insulator Transistors Under Self-Heating Conditions
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
790
797
.10.1115/1.2717243
2.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y.-J.
, and
Lim
,
S.-K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
132
(
4
), p.
041009
.10.1115/1.4000885
3.
Tavakkoli
,
F.
,
Ebrahimi
,
S.
,
Wang
,
S.
, and
Vafai
,
K.
,
2016
, “
Thermophysical and Geometrical Effects on the Thermal Performance and Optimization of a Three-Dimensional Integrated Circuit
,”
ASME J. Heat Transfer
,
138
(
8
), p.
082101
.10.1115/1.4033138
4.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
15
24
.10.1016/j.applthermaleng.2014.01.074
5.
Xie
,
G.
,
Li
,
Y.
,
Zhang
,
F.
, and
Sundén
,
B.
,
2016
, “
Analysis of Micro-Channel Heat Sinks With Rectangular-Shaped Flow Obstructions
,”
Numer. Heat Transfer, Part A
,
69
(
4
), pp.
335
351
.10.1080/10407782.2015.1080580
6.
Bailey
,
C.
,
2008
, “
Thermal Management Technologies for Electronic Packaging: Current Capabilities and Future Challenges for Modelling Tools
,”
Proceedings of the Electronics Packaging Technology Conference
, Singapore, Dec. 9–12, pp.
527
532
.10.1109/EPTC.2008.4763487
7.
Sauciuc
,
L.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
,
2003
, “
Air-Cooling Extension-Performance Limits for Processor Cooling Applications
,”
Proceeding of the Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 11–13, pp.
74
81
.10.1109/STHERM.2003.1194342
8.
Tullius
,
J. F.
,
Vajtai
,
R.
, and
Bayazitoglu
,
Y.
,
2011
, “
A Review of Cooling in Microchannels
,”
Heat Transfer Eng.
,
32
(
7–8
), pp.
527
541
.10.1080/01457632.2010.506390
9.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
10.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J.
,
1990
, “
Liquid Transport in Micron and Submicron Channels
,”
Sens. Actuators A
,
22
(
1–3
), pp.
431
434
.10.1016/0924-4247(89)80008-1
11.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
.
12.
Adams
,
T.
,
Abdel-Khalik
,
S.
,
Jeter
,
S.
, and
Qureshi
,
Z.
,
1998
, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
,
41
(
6–7
), pp.
851
857
.10.1016/S0017-9310(97)00180-4
13.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
,
2000
, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
21
), pp.
3925
3936
.10.1016/S0017-9310(00)00045-4
14.
Peng
,
X.
,
Wang
,
B.
,
Peterson
,
G.
, and
Ma
,
H.
,
1995
, “
Experimental Investigation of Heat Transfer in Flat Plates With Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
38
(
1
), pp.
127
137
.10.1016/0017-9310(94)00136-J
15.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
16.
Ho
,
C.-J.
,
Wei
,
L.
, and
Li
,
Z.
,
2010
, “
An Experimental Investigation of Forced Convective Cooling Performance of a Microchannel Heat Sink With Al2O3/Water Nanofluid
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
96
103
.10.1016/j.applthermaleng.2009.07.003
17.
Wu
,
J.
,
Zhao
,
J.
,
Lei
,
J.
, and
Liu
,
B.
,
2016
, “
Effectiveness of Nanofluid on Improving the Performance of Microchannel Heat Sink
,”
Appl. Therm. Eng.
,
101
, pp.
402
412
.10.1016/j.applthermaleng.2016.01.114
18.
Husain
,
A.
,
Kim
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Performance Analysis and Design Optimization of Micro-Jet Impingement Heat Sink
,”
Heat Mass Transfer
,
49
(
11
), pp.
1613
1624
.10.1007/s00231-013-1202-3
19.
Baby
,
R.
, and
Balaji
,
C.
,
2014
, “
Thermal Performance of a PCM Heat Sink Under Different Heat Loads: An Experimental Study
,”
Int. J. Therm. Sci.
,
79
, pp.
240
249
.10.1016/j.ijthermalsci.2013.12.018
20.
Bar-Cohen
,
A.
, and
Wang
,
P.
,
2012
, “
Thermal Management of on-Chip Hot Spot
,”
ASME J. Heat Transfer
,
134
(
5
), p.
051017
.10.1115/1.4005708
21.
Mondal
,
M.
,
Misra
,
R. P.
, and
De
,
S.
,
2014
, “
Combined Electroosmotic and Pressure Driven Flow in a Microchannel at High Zeta Potential and Overlapping Electrical Double Layer
,”
Int. J. Therm. Sci.
,
86
, pp.
48
59
.10.1016/j.ijthermalsci.2014.06.029
22.
Al-Rjoub
,
M. F.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2011
, “
Assessment of an Active-Cooling Micro-Channel Heat Sink Device, Using Electro-Osmotic Flow
,”
Int. J. Heat Mass Transfer
,
54
(
21–22
), pp.
4560
4569
.10.1016/j.ijheatmasstransfer.2011.06.022
23.
Eng
,
P.
,
Nithiarasu
,
P.
, and
Guy
,
O.
,
2010
, “
An Experimental Study on an Electro-Osmotic Flow-Based Silicon Heat Spreader
,”
Microfluid. Nanofluid.
,
9
(
4–5
), pp.
787
795
.10.1007/s10404-010-0594-3
24.
Liechty
,
B.
,
Webb
,
B.
, and
Maynes
,
R.
,
2005
, “
Convective Heat Transfer Characteristics of Electro-Osmotically Generated Flow in Microtubes at High Wall Potential
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2360
2371
.10.1016/j.ijheatmasstransfer.2005.01.019
25.
Maynes
,
D.
, and
Webb
,
B.
,
2004
, “
The Effect of Viscous Dissipation in Thermally Fully-Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
5
), pp.
987
999
.10.1016/j.ijheatmasstransfer.2003.08.016
26.
Maynes
,
D.
, and
Webb
,
B.
,
2003
, “
Fully Developed Electro-Osmotic Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
8
), pp.
1359
1369
.10.1016/S0017-9310(02)00423-4
27.
Keramati
,
H.
,
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2016
, “
Analytical Solutions for Thermo-Fluidic Transport in Electroosmotic Flow Through Rough Microtubes
,”
Int. J. Heat Mass Transfer
,
92
, pp.
244
251
.10.1016/j.ijheatmasstransfer.2015.08.089
28.
Vocale
,
P.
,
Geri
,
M.
,
Cattani
,
L.
,
Morini
,
G.
, and
Spiga
,
M.
,
2013
, “
Electro-Osmotic Heat Transfer in Elliptical Microchannels Under H1 Boundary Condition
,”
Int. J. Therm. Sci.
,
72
, pp.
92
101
.10.1016/j.ijthermalsci.2013.04.028
29.
Su
,
J.
,
Jian
,
Y.
, and
Chang
,
L.
,
2012
, “
Thermally Fully Developed Electroosmotic Flow Through a Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
6285
6290
.10.1016/j.ijheatmasstransfer.2012.05.056
30.
Sadeghi
,
A.
, and
Saidi
,
M. H.
,
2010
, “
Viscous Dissipation Effects on Thermal Transport Characteristics of Combined Pressure and Electroosmotically Driven Flow in Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
19–20
), pp.
3782
3791
.10.1016/j.ijheatmasstransfer.2010.04.028
31.
Sadeghi
,
A.
,
Azari
,
M.
, and
Chakraborty
,
S.
,
2017
, “
H2 Forced Convection in Rectangular Microchannels Under a Mixed Electroosmotic and Pressure-Driven Flow
,”
Int. J. Therm. Sci.
,
122
, pp.
162
171
.10.1016/j.ijthermalsci.2017.08.019
32.
Sadeghi
,
A.
,
Yavari
,
H.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2011
, “
Mixed Electroosmotically and Pressure-Driven Flow With Temperature-Dependent Properties
,”
J. Thermophys. Heat Transfer
,
25
(
3
), pp.
432
442
.10.2514/1.T3638
33.
Horiuchi
,
K.
, and
Dutta
,
P.
,
2004
, “
Joule Heating Effects in Electroosmotically Driven Microchannel Flows
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3085
3095
.10.1016/j.ijheatmasstransfer.2004.02.020
34.
Iverson
,
B.
,
Maynes
,
D.
, and
Webb
,
B.
,
2004
, “
Thermally Developing Electroosmotic Convection in Rectangular Microchannels With Vanishing Debye-Layer Thickness
,”
J. Thermophys. Heat Transfer
,
18
(
4
), pp.
486
493
.10.2514/1.3769
35.
Sadeghi
,
A.
,
Veisi
,
H.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2012
, “
Graetz Problem Extended to Mixed Electroosmotically and Pressure Driven Flow
,”
J. Thermophys. Heat Transfer
,
26
(
1
), pp.
123
133
.10.2514/1.T3737
36.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
37.
Yavari
,
H.
,
Sadeghi
,
A.
,
Saidi
,
M. H.
, and
Chakraborty
,
S.
,
2014
, “
Temperature Rise in Electroosmotic Flow of Typical Non-Newtonian Biofluids Through Rectangular Microchannels
,”
ASME J. Heat Transfer
,
136
(
3
), p.
031702
.10.1115/1.4025561
38.
Maganti
,
L. S.
,
Dhar
,
P.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2017
, “
Selecting Optimal Parallel Microchannel Configuration(s) for Active Hot Spot Mitigation of Multicore Microprocessors in Real Time
,”
ASME J. Heat Transfer
,
139
(
10
), p.
102401
.10.1115/1.4036643
39.
Kim
,
B.
,
2016
, “
An Experimental Study on Fully Developed Laminar Flow and Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
62
, pp.
224
232
.10.1016/j.ijheatfluidflow.2016.10.007
40.
Cho
,
E. S.
,
Choi
,
J. W.
,
Yoon
,
J. S.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Microchannel Heat Sinks Considering Mass Flow Distribution With Non-Uniform Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2159
2168
.10.1016/j.ijheatmasstransfer.2009.12.026
41.
Khan
,
W. A.
, and
Yovanovich
,
M. M.
,
2008
, “
Analytical Modeling of Fluid Flow and Heat Transfer in Microchannel/Nanochannel Heat Sinks
,”
J. Thermophys. Heat Transfer
,
22
(
3
), pp.
352
359
.10.2514/1.35621
42.
Spiga
,
M.
, and
Morini
,
G. L.
,
1996
, “
Nusselt Numbers in Laminar Flow for H2 Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
39
(
6
), pp.
1165
1174
.10.1016/0017-9310(95)00205-7
43.
Sadeghi
,
A.
,
Baghani
,
M.
, and
Saidi
,
M.
,
2013
, “
Gaseous Slip Flow Forced Convection Through Ordered Microcylinders
,”
Microfluid. Nanofluid.
,
15
(
1
), pp.
73
85
.10.1007/s10404-012-1128-y
44.
Baghani
,
M.
,
Sadeghi
,
A.
, and
Baghani
,
M.
,
2014
, “
Gaseous Slip Flow Forced Convection in Microducts of Arbitrary but Constant Cross Section
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
4
), pp.
354
372
.10.1080/15567265.2014.948232
You do not currently have access to this content.