Abstract

Compact parallel-flow three-fluid heat exchanger (TFHX) of plate-fin type is optimized for attaining the minimum entropy generation unit. Four different types of plate-fins (plain rectangular, offset strip, corrugated louvered, and wavy fin (WF)) which are embodied within heat exchanger have been selected for the study under both cocurrent and countercurrent flow arrangements. The range of the decision variables are 0.3ma,mb,mc3, 0.1Ø0.95, 0.1Lx,Ly2, 0.015H0.033, 100n700, 0.0001tf0.0002, 0.001l0.009, 0.01Lwav0.09, and 0.001A0.005. Genetic algorithm is selected as an optimization tool that is apt in handling various continuous and discrete variables and the problems with the complexities in the objective function as well as in constraints. Validation of the optimization model is carried out by comparing the optimum results with that obtained from the experiments, particle swarm optimization (PSO) (under without heat duty constraint), and graphical method (under with heat duty constraint). It is observed that for a specified heat duty (180 kW) and given operating conditions, corrugated louvered fin (CLF) with countercurrent flow arrangement offers the minimum entropy generation among all. It is riveting to learn that the optimum results occur for most of the considered cases when the flowrate of the central hot fluid is lower than that of the adjacent fluids. At fixed Re = 3000 for all the fin types, off-set strip fin is the most favorable one, and plain rectangular fin (PRF) offers the worst solution comparatively.

References

1.
Morley
,
T. B.
,
1933
, “
Exchange of Heat Between Three Fluids
,”
Engineer
,
155
, p.
134
.
2.
Aulds
,
D. D.
, and
Barron
,
R. F.
,
1967
, “
Three-Fluid Heat Exchanger Effectiveness
,”
Int. J. Heat Mass Transfer
,
10
(
10
), pp.
1457
1462
.10.1016/0017-9310(67)90032-4
3.
Cho
,
Y. H.
, and
Chang
,
H. M.
,
1993
, “
An Effectiveness-NTU Method for Triple-Passage Counterflow Heat Exchangers
,”
KSME J.
,
7
(
3
), pp.
282
289
.10.1007/BF02970972
4.
Ünal
,
A.
,
2003
, “
Effectiveness-NTU Relations for Triple Concentric-Tube Heat Exchangers
,”
Int. Commun. Heat Mass
,
30
(
2
), pp.
261
–2
72
.10.1016/S0735-1933(03)00037-X
5.
García-Valladares
,
O.
,
2004
, “
Numerical Simulation of Triple Concentric-Tube Heat Exchangers
,”
Int. J. Therm. Sci.
,
43
(
10
), pp.
979
991
.10.1016/j.ijthermalsci.2004.02.006
6.
Bielski
,
S.
, and
Malinowski
,
L.
,
2005
, “
An Analytical Method for Determining Transient Temperature Field in a Parallel-Flow Three-Fluid Heat Exchanger
,”
Int. Commun. Heat Mass
,
32
(
8
), pp.
1034
1044
.10.1016/j.icheatmasstransfer.2004.10.031
7.
Shrivastava
,
D.
, and
Ameel
,
T. A.
,
2004
, “
Three-Fluid Heat Exchangers With Three Thermal Communications. Part B: Effectiveness Evaluation
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3867
3875
.10.1016/j.ijheatmasstransfer.2004.03.020
8.
Zhao
,
M.
, and
Li
,
Y.
,
2012
, “
New Integral-Mean Temperature Difference Model for Thermal Design and Simulation of Parallel Three-Fluid Heat Exchanger
,”
Int. J. Therm. Sci.
,
59
, pp.
203
213
.10.1016/j.ijthermalsci.2012.04.019
9.
Singh
,
S. K.
,
Mishra
,
M.
, and
Jha
,
P. K.
,
2014
, “
Transient Behavior of Co-Current Parallel Flow Three-Fluid Heat Exchanger
,”
Int. Commun. Heat Mass
,
52
, pp.
46
50
.10.1016/j.icheatmasstransfer.2014.01.001
10.
Pătrăşcioiu
,
C.
, and
Rădulescu
,
S.
,
2015
, “
Prediction of the Outlet Temperatures in Triple Concentric-Tube Heat Exchangers in Laminar Flow Regime: Case Study
,”
Heat Mass Transfer
,
51
(
1
), pp.
59
66
.10.1007/s00231-014-1385-2
11.
Bejan
,
A.
,
1996
,
Entropy Generation Minimisation
,
CRC Press
,
New York
.
12.
Zhou
,
Y.
,
Zhu
,
L.
,
Yu
,
J.
, and
Li
,
Y.
,
2014
, “
Optimization of Plate-Fin Heat Exchangers by Minimizing Specific Entropy Generation Rate
,”
Int. J. Heat Mass Transfer
,
78
, pp.
942
946
.10.1016/j.ijheatmasstransfer.2014.07.053
13.
Guo
,
J.
,
Cheng
,
L.
, and
Xu
,
M.
,
2009
, “
Optimization Design of Shell-And-Tube Heat Exchanger by Entropy Generation Minimization and Genetic Algorithm
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2954
2960
.10.1016/j.applthermaleng.2009.03.011
14.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2009
, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
IEEE Trans. Compon. Packag.
,
32
(
2
), pp.
243
251
.10.1109/TCAPT.2009.2022586
15.
Farzaneh-Gord
,
M.
,
Ameri
,
H.
, and
Arabkoohsar
,
A.
,
2016
, “
Tube-in-Tube Helical Heat Exchangers Performance Optimization by Entropy Generation Minimization Approach
,”
Appl. Therm. Eng.
,
108
, pp.
1279
1287
.10.1016/j.applthermaleng.2016.08.028
16.
Fabbri
,
G.
,
1997
, “
A Genetic Algorithm for Fin Profile Optimization
,”
Int. J. Heat Mass Transfer
,
40
(
9
), pp.
2165
2172
.10.1016/S0017-9310(96)00294-3
17.
Ponce-Ortega
,
J. M.
,
Serna-González
,
M.
, and
Jiménez-Gutiérrez
,
A.
,
2008
, “
Synthesis of Multipass Heat Exchanger Networks Using Genetic Algorithms
,”
Comput. Chem. Eng.
,
32
(
10
), pp.
2320
2332
.10.1016/j.compchemeng.2007.11.012
18.
Amini
,
M.
, and
Bazargan
,
M.
,
2014
, “
Two Objective Optimization in Shell-And-Tube Heat Exchangers Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
69
(
1–2
), pp.
278
285
.10.1016/j.applthermaleng.2013.11.034
19.
Vahdat Azad
,
A.
, and
Vahdat Azad
,
N.
,
2016
, “
Application of Nanofluids for the Optimal Design of Shell and Tube Heat Exchangers Using Genetic Algorithm,” Case Stud
,”
Therm. Eng.
,
8
, pp.
198
206
.10.1016/j.csite.2016.07.004
20.
Imran
,
M.
,
Pambudi
,
N. A.
, and
Farooq
,
M.
,
2017
, “
Thermal and Hydraulic Optimization of Plate Heat Exchanger Using Multi Objective Genetic Algorithm,” Case Stud
,”
Therm. Eng.
,
10
, pp.
570
578
.10.1016/j.csite.2017.10.003
21.
Shi
,
H. N.
,
Ma
,
T.
,
Chu
,
W. X.
, and
Wang
,
Q. W.
,
2017
, “
Optimization of Inlet Part of a Microchannel Ceramic Heat Exchanger Using Surrogate Model Coupled With Genetic Algorithm
,”
Energy Convers. Manag.
,
149
, pp.
988
996
.10.1016/j.enconman.2017.04.035
22.
Yadav
,
M. S.
,
Giri
,
S. A.
, and
Momale
,
V. C.
,
2017
, “
Sizing Analysis of Louvered Fin Flat Tube Compact Heat Exchanger by Genetic Algorithm
,”
Appl. Therm. Eng.
,
125
, pp.
1426
1436
.10.1016/j.applthermaleng.2017.07.119
23.
Du
,
S.
,
He
,
Y. L.
,
Yang
,
W. W.
, and
Liu
,
Z. B.
,
2018
, “
Optimization Method for the Porous Volumetric Solar Receiver Coupling Genetic Algorithm and Heat Transfer Analysis
,”
Int. J. Heat Mass Transfer
,
122
, pp.
383
390
.10.1016/j.ijheatmasstransfer.2018.01.120
24.
Aasi
,
H. K.
, and
Mishra
,
M.
,
2019
, “
A Novel Equivalence Approximate Model for Second Law Based Optimization of Three-Fluid Cross-Flow Plate-Fin Heat Exchanger Using Genetic Algorithm
,”
ASME J Heat Transfer
,
141
, p.
111802
.10.1115/1.4044593
25.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
26.
Diani
,
A.
,
Mancin
,
S.
, and
Rossetto
,
L.
,
2012
, “
Experimental and Numerical Analysis of Different Extended Surfaces
,”
395
(
1
), p.
012045
.
27.
Joshi
,
H. M.
, and
Webb
,
R. L.
,
1987
, “
Heat Transfer and Friction in the Offset Strip-Fin Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
30
(
1
), pp.
69
84
.10.1016/0017-9310(87)90061-5
28.
Davenport
,
C. J.
,
1983
, “
Correlation for Heat Transfer and Flow Friction Characteristics of Louver Fin
,”
AIChE Symp.
,
225
(
79
), pp.
19
27
.
29.
Dong
,
J. Q.
,
Chen
,
J. P.
,
Chen
,
Z. J.
,
Zhou
,
Y. M.
, and
Zhang
,
W. F.
,
2007
, “
Heat Transfer and Pressure Drop Correlations for the Wavy Fin and Flat Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
27
, pp.
2066
2073
.10.1016/j.applthermaleng.2006.11.012
30.
Aasi
,
H. K.
, and
Mishra
,
M.
,
2020
, “
Influence of Flow Non-Uniformity on the Dynamic Behaviour of Three-Fluid Cross-Flow Compact Heat Exchanger
,”
Int. J. Therm. Sci.
,
149
, p.
106177
.10.1016/j.ijthermalsci.2019.106177
31.
Goldberg
,
D. E.
,
2000
,
Genetics Algorithms in Search Optimisation and Machine Learning
,
Addison-Wesley Longman
, Monaco.
32.
Wolfersdorf
,
J. V.
,
Achermann
,
E.
, and
Weigand
,
B.
,
1997
, “
Shape Optimisation of Cooling Channels Using Genetic Algorithms
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
380
388
.10.1115/1.2824239
You do not currently have access to this content.