Abstract

Condensation of refrigerant R-134a is experimentally investigated on a paraffin-coated copper surface and compared to condensation on a plain copper surface. Heat transfer and visualization experiments are conducted for vertical-plate samples and for two different fin structures at various degrees of subcooling. A one-dimensional heat conduction model is used to interpret the condensation heat transfer measurements, while liquid retention behavior is quantified with the aid of image processing. The experimental results on vertical plates show that the heat transfer is enhanced on the coated surface with a maximum increase of 27% in the condensing heat transfer coefficient. On fin structures, the liquid retention was reduced by up to 28% on a coated surface. The heat transfer and retention behavior vary with surface material, degree of subcooling, and fin geometry.

References

References
1.
Cavallini
,
A.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2000
, “
Heat Transfer and Pressure Drop During Condensation of Refrigerants Inside Horizontal Enhanced Tubes
,”
Int. J. Refrig.
,
23
(
1
), pp.
4
25
.10.1016/S0140-7007(99)00032-8
2.
Nagata
,
R.
,
Kondou
,
C.
, and
Koyama
,
S.
,
2016
, “
Comparative Assessment of Condensation and Pool Boiling Heat Transfer on Horizontal Plain Single Tubes for R1234ze (E), R1234ze (Z), and R1233zd (E)
,”
Int. J. Refrig.
,
63
, pp.
157
170
.10.1016/j.ijrefrig.2015.11.002
3.
Rudy
,
T. M.
, and
Webb
,
R. L.
,
1985
, “
An Analytical Model to Predict Condensate Retention on Horizontal Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
107
(
2
), pp.
361
368
.10.1115/1.3247423
4.
Attinger
,
D.
,
Frankiewicz
,
C.
,
Betz
,
A. R.
,
Schutzius
,
T. M.
,
Ganguly
,
R.
,
Das
,
A.
,
Kim
,
C. J.
, and
Megaridis
,
C. M.
,
2014
, “
Surface Engineering for Phase Change Heat Transfer: A Review
,”
MRS Energy Sustainability
,
1
(
4
), pp.
69
109
.10.1557/mre.2014.9
5.
Cho
,
H. J.
,
Preston
,
D. J.
,
Zhu
,
Y.
, and
Wang
,
E. N.
,
2017
, “
Nanoengineered Materials for Liquid–Vapour Phase-Change Heat Transfer
,”
Nat. Rev. Mater.
,
2
(
2
), p.
16092
.10.1038/natrevmats.2016.92
6.
Honda
,
H.
, and
Nozu
,
S.
,
1987
, “
A Prediction Method for Heat Transfer During Film Condensation on Horizontal Low Integral-Fin Tubes
,”
ASME J. Heat Transfer
,
109
(
1
), pp.
218
225
.10.1115/1.3248046
7.
Webb
,
R. L.
,
1988
, “
Enhancement of Film Condensation
,”
Int. Commun. Heat Mass
,
15
(
4
), pp.
475
507
.10.1016/0735-1933(88)90044-9
8.
Fitzgerald
,
C. L.
,
Briggs
,
A.
,
Rose
,
J. W.
, and
Wang
,
H. S.
,
2012
, “
Effect of Vapor Velocity on Condensate Retention Between Fins During Condensation on Low-Finned Tubes
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1412
1418
.10.1016/j.ijheatmasstransfer.2011.09.063
9.
Korte
,
C.
, and
Jacobi
,
A. M.
,
2001
, “
Condensate Retention Effects on the Performance of Plain-Fin-and-Tube Heat Exchangers: Retention Data and Modeling
,”
ASME J. Heat Transfer
,
123
(
5
), pp.
926
936
.10.1115/1.1391276
10.
Wong
,
T. S.
,
Kang
,
S. H.
,
Tang
,
S. K.
,
Smythe
,
E. J.
,
Hatton
,
B. D.
,
Grinthal
,
A.
, and
Aizenberg
,
J.
,
2011
, “
Bioinspired Self-Repairing Slippery Surfaces With Pressure-Stable Omniphobicity
,”
Nature
,
477
(
7365
), pp.
443
447
.10.1038/nature10447
11.
Wang
,
L.
, and
McCarthy
,
T. J.
,
2016
, “
Covalently Attached Liquids: Instant Omniphobic Surfaces With Unprecedented Repellency
,”
Angew. Chem.
,
55
(
1
), pp.
244
248
.10.1002/anie.201509385
12.
Good
,
R. J.
,
1992
, “
Contact Angle, Wetting, and Adhesion: A Critical Review
,”
J. Adhes. Sci. Technol.
,
6
(
12
), pp.
1269
1302
.10.1163/156856192X00629
13.
Chatterjee
,
R.
,
Beysens
,
D.
, and
Anand
,
S.
,
2019
, “
Delaying Ice and Frost Formation Using Phase‐Switching Liquids
,”
Adv. Mater.
,
31
(
17
), p.
1807812
.10.1002/adma.201807812
14.
Miljkovic
,
N.
, and
Wang
,
E. N.
,
2013
, “
Condensation Heat Transfer on Superhydrophobic Surfaces
,”
MRS Bull.
,
38
(
5
), pp.
397
406
.10.1557/mrs.2013.103
15.
Mou
,
L. W.
,
Zhang
,
T. Y.
,
Zhang
,
J. Y.
,
Li
,
J. Q.
, and
Fan
,
L. W.
,
2019
, “
Realization of Coalescence-Induced Condensate Droplet Jumping on a Hierarchical Porous Superhydrophobic Surface Over a Wide Range of Subcooling Up to 20 K
,”
AIP Adv.
,
9
(
4
), p.
045125
.10.1063/1.5090829
16.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H. J.
, and
Craig
,
V. S.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.10.1088/0034-4885/68/12/R05
17.
Anand
,
S.
,
Paxson
,
A. T.
,
Dhiman
,
R.
,
Smith
,
J. D.
, and
Varanasi
,
K. K.
,
2012
, “
Enhanced Condensation on Lubricant-Impregnated Nanotextured Surfaces
,”
ACS Nano
,
6
(
11
), pp.
10122
10129
.10.1021/nn303867y
18.
Preston
,
D. J.
,
Lu
,
Z.
,
Song
,
Y.
,
Zhao
,
Y.
,
Wilke
,
K. L.
,
Antao
,
D. S.
,
Louis
,
M.
, and
Wang
,
E. N.
,
2018
, “
Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces
,”
Sci. Rep.
,
8
(
1
), pp.
1
9
.10.1038/s41598-017-18955-x
19.
Pati
,
S.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2013
, “
Slip-Driven Alteration in Film Condensation Over Vertical Surfaces
,”
Int. Commum. Heat. Mass.
,
46
, pp.
37
41
.10.1016/j.icheatmasstransfer.2013.05.002
20.
Gebauer
,
T.
,
Al-Badri
,
A. R.
,
Gotterbarm
,
A.
,
El Hajal
,
J.
,
Leipertz
,
A.
, and
Fröba
,
A. P.
,
2013
, “
Condensation Heat Transfer on Single Horizontal Smooth and Finned Tubes and Tube Bundles for R134a and Propane
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
516
524
.10.1016/j.ijheatmasstransfer.2012.09.049
21.
Rykaczewski
,
K.
,
Paxson
,
A. T.
,
Staymates
,
M.
,
Walker
,
M. L.
,
Sun
,
X.
,
Anand
,
S.
,
Srinivasan
,
S.
,
McKinley
,
G. H.
,
Chinn
,
J.
,
Scott
,
J. H. J.
, and
Varanasi
,
K. K.
,
2014
, “
Dropwise Condensation of Low Surface Tension Fluids on Omniphobic Surfaces
,”
Sci. Rep.
,
4
, p.
4158
.10.1038/srep04158
22.
Aili
,
A.
,
Ge
,
Q.
, and
Zhang
,
T.
,
2018
, “
Effect of Mini/Micro/Nanostructures on Filmwise Condensation of Low-Surface-Tension Fluids
,”
ASME J. Heat Transfer
,
140
(
10
), p.
102402
.10.1115/1.4040143
23.
Yuan
,
Y.
, and
Lee
,
T. R.
,
2013
, “
Contact Angle and Wetting Properties
,”
Surface Science Techniques
,
Springer
,
Berlin, pp.
3
34
.
24.
Marsh
,
K. N.
, and
Kandil
,
M. E.
,
2002
, “
Review of Thermodynamic Properties of Refrigerants Lubricant Oils
,”
Fluid Ph. Equilib.
,
199
(
1–2
), pp.
319
334
.10.1016/S0378-3812(02)00025-0
25.
Nusselt
,
W.
,
1916
, “
Die Oberflachenkondensation Des Wasserdamphes
,”
Z. Ver. Dtsch. Ing.
,
60
, pp.
541
546
.
26.
Adamek
,
T.
, and
Webb
,
R. L.
,
1990
, “
Prediction of Film Condensation on Horizontal Integral Fin Tubes
,”
Int. J. Heat Mass Transfer
,
33
(
8
), pp.
721
–7
17
.10.1016/0017-9310(90)90027-R
27.
Takaharu
,
T.
,
Hiroaki
,
T.
, and
Shigenori
,
T.
,
1991
, “
Experimental Verification of Constriction Resistance Theory in Dropwise Condensation Heat Transfer
,”
Int. J. Heat Mass Transfer
,
34
(
11
), pp.
2787
2796
.10.1016/0017-9310(91)90238-A
You do not currently have access to this content.