Abstract

An experimental study of saturated flow boiling in a high-aspect-ratio one-side-heating rectangular microchannel was conducted with de-ionized water as the working fluid. ZnO microrods with the average diameter of about 1 μm and length of about 7 μm were synthesized on the Ti wafer surface, which was used to fabricate the heated bottom surface of the microchannel. The ZnO microrod surface appeared to be hydrophobic and the capillary wetting effect on the surface was found after being wet. The heat transfer and pressure drop characteristics of saturated flow boiling in the microchannel were studied and the flow patterns were photographed with a high-speed camera. Almost all the flow patterns observed in this experiment featured the main annular flow and abrupt flush of bubbly flow. Because of the capillary wetting effect on the ZnO microrod surface, the local dryout and rewetting phenomenon did not appear in this study. However, due to the numerous nucleation sites on ZnO microrod surface, the abrupt bubble flow caused much more disruption to the liquid film of annular flow when compared to the regular silicon surface. The abrupt bubble flow flushed through the annular liquid film and caused the fluctuation and nonuniformity of the liquid film and heat transfer deterioration, which was severer in the high heat flux conditions. Otherwise, the capillary effect on the ZnO microrod surface was able to restrict the nonuniformity of the liquid film under high heat flux and low mass flux conditions; thus, the deterioration of heat transfer performances diminished.

References

1.
Bergles
,
A. E.
,
1999
, “
Enhanced Heat Transfer: Endless Frontier, or Mature and Routine?
,”
J. Enhanced Heat Transfer
,
6
(
2–4
), pp.
79
88
.10.1615/JEnhHeatTransf.v6.i2-4.30
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2002
, “
Evolution of Microchannel Flow Passages: Thermohydraulic Performance and Fabrication Technology
,”
ASME
Paper No. IMECE2002-32043.10.1115/IMECE2002-32043
3.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
4.
Karayiannis
,
T.
, and
Mahmoud
,
M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
5.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
.10.1016/j.ijheatmasstransfer.2016.12.065
6.
Bergles
,
A. E.
, and
Manglik
,
R. M.
,
2013
, “
Current Progress and New Developments in Enhanced Heat and Mass Transfer
,”
J. Enhanced Heat Transfer
,
20
(
1
), pp.
1
15
.10.1615/JEnhHeatTransf.2013006989
7.
Traversa
,
E.
,
Agostinelli
,
E.
, and
Fiorani
,
D.
,
2011
, “
There is Still Plenty of Room at the Bottom: Nanostructured Materials 2010
,”
J. Nanopart. Res.
,
13
(
11
), pp.
5585
5586
.10.1007/s11051-011-0615-5
8.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.10.1115/1.4005126
9.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
.10.1016/j.ijheatmasstransfer.2009.12.059
10.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Evaporative Heat Transfer in Micro/Minichannels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1778
1787
.10.1016/j.ijheatmasstransfer.2010.01.012
11.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
8
16
.10.1115/1.1643090
12.
Huh
,
C.
, and
Kim
,
M. H.
,
2007
, “
Pressure Drop, Boiling Heat Transfer and Flow Patterns During Flow Boiling in a Single Microchannel
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
730
737
.10.1080/01457630701328213
13.
Karayiannis
,
T. G.
,
Mahmoud
,
M. M.
, and
Kenning
,
D. B. R.
,
2012
, “
A Study of Discrepancies in Flow Boiling Results in Small to Microdiameter Metallic Tubes
,”
Exp. Therm. Fluid Sci.
,
36
, pp.
126
142
.10.1016/j.expthermflusci.2011.09.005
14.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.10.1016/j.ijthermalsci.2009.12.016
15.
Dong
,
E. K.
,
Dong
,
I. Y.
,
Dong
,
W. J.
,
Kim
,
M. H.
, and
Ahn
,
H. S.
,
2015
, “
Review of Boiling Heat Transfer Enhancement on Micro/Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
66
, pp.
173
196
.10.1016/j.expthermflusci.2015.03.023
16.
Bai
,
P.
,
Tao
,
T.
, and
Tang
,
B.
,
2013
, “
Enhanced Flow Boiling in Parallel Microchannels With Metallic Porous Coating
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
291
297
.10.1016/j.applthermaleng.2013.04.067
17.
C.
M
.,
Sitar
,
A.
,
Schille
,
J.
,
Mauersberger
,
S.
,
Löschner
,
U.
, and
Golobič
,
I.
,
2018
, “
Improved Boiling Heat Transfer in Dry Etched Microchannels With Laser Structured Surfaces
,”
ASME
Paper No. ICNMM2018-7726.10.1115/ICNMM2018-7726
18.
Morshed
,
A. K. M. M.
,
Yang
,
F.
,
Yakut Ali
,
M.
,
Khan
,
J. A.
, and
Li
,
C.
,
2012
, “
Enhanced Flow Boiling in a Microchannel With Integration of Nanowires
,”
Appl. Therm. Eng.
,
32
, pp.
68
75
.10.1016/j.applthermaleng.2011.08.031
19.
Shin
,
S.
,
Choi
,
G.
,
Kim
,
B. S.
, and
Cho
,
H. H.
,
2014
, “
Flow Boiling Heat Transfer on Nanowire-Coated Surfaces With Highly Wetting Liquid
,”
Energy
,
76
, pp.
428
435
.10.1016/j.energy.2014.08.037
20.
Li
,
D.
,
Wu
,
G. S.
,
Wang
,
W.
,
Wang
,
Y. D.
,
Liu
,
D.
,
Zhang
,
D. C.
,
Chen
,
Y. F.
,
Peterson
,
G. P.
, and
Yang
,
R.
,
2012
, “
Enhancing Flow Boiling Heat Transfer in Microchannels for Thermal Management With Monolithically-Integrated Silicon Nanowires
,”
Nano Lett.
,
12
(
7
), pp.
3385
3390
.10.1021/nl300049f
21.
Alam
,
T.
,
Khan
,
A. S.
,
Li
,
W.
,
Yang
,
F.
,
Tong
,
Y.
,
Khan
,
J.
, and
Li
,
C.
,
2016
, “
Force Analysis and Bubble Dynamics During Flow Boiling in Silicon Nanowire Microchannels
,”
Int. J. Heat Mass Transfer
,
101
, pp.
937
947
.10.1016/j.ijheatmasstransfer.2016.05.043
22.
Bhavnani
,
S.
,
Narayanan
,
V.
,
Qu
,
W.
,
Jensen
,
M.
,
Kandlikar
,
S.
,
Kim
,
J.
, and
Thome
,
J.
,
2014
, “
Boiling Augmentation With Micro/Nanostructured Surfaces: Current Status and Research Outlook
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
197
222
.10.1080/15567265.2014.923074
23.
Li
,
W.
,
Lin
,
Y.
,
Zhou
,
K.
,
Li
,
J.
, and
Zhu
,
J.
,
2019
, “
Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel
,”
Int. J. Therm. Sci.
,
145
, p.
105996
.10.1016/j.ijthermalsci.2019.105996
24.
Luo
,
Y.
,
Li
,
W.
,
Zhou
,
K.
,
Sheng
,
K.
,
Shao
,
S.
,
Zhang
,
Z.
,
Du
,
J.
, and
Minkowycz
,
W. J.
,
2020
, “
Three-Dimensional Numerical Simulation of Saturated Annular Flow Boiling in a Narrow Rectangular Microchannel
,”
Int. J. Heat Mass Transfer
,
149
, p.
119246
.10.1016/j.ijheatmasstransfer.2019.119246
25.
Zhou
,
K.
,
Coyle
,
C.
,
Li
,
J.
,
Buongiorno
,
J.
, and
Li
,
W.
,
2017
, “
Flow Boiling in Vertical Narrow Microchannels of Different Surface Wettability Characteristics
,”
Int. J. Heat Mass Transfer
,
109
, pp.
103
114
.10.1016/j.ijheatmasstransfer.2017.01.111
26.
Li
,
W.
,
Li
,
J.
,
Feng
,
Z.
,
Zhou
,
K.
, and
Wu
,
Z.
,
2017
, “
Local Heat Transfer in Subcooled Flow Boiling in a Vertical Mini-Gap Channel
,”
Int. J. Heat Mass Transfer
,
110
, pp.
796
804
.10.1016/j.ijheatmasstransfer.2017.03.086
27.
Li
,
W.
,
Zhou
,
K.
,
Li
,
J.
,
Feng
,
Z.
, and
Zhu
,
H.
,
2018
, “
Effects of Heat Flux, Mass Flux and Two-Phase Inlet Quality on Flow Boiling in a Vertical Superhydrophilic Microchannel
,”
Int. J. Heat Mass Transfer
,
119
, pp.
601
613
.10.1016/j.ijheatmasstransfer.2017.11.145
28.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
8–9
), pp.
1925
1935
.10.1016/j.ijheatmasstransfer.2003.09.031
29.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
30.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME
Paper No. IMECE2002-33711.10.1115/IMECE2002-33711
31.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I: Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2755
2771
.10.1016/S0017-9310(03)00041-3
32.
Zhang
,
L.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Banerjee
,
S. S.
,
Ashegi
,
M.
, and
Goodson
,
K. E.
,
2002
, “
Measurements and Modeling of Two-Phase Flow in Microchannels With Nearly Constant Heat Flux Boundary Conditions
,”
J. Microelectromech. Syst.
,
11
, pp.
12
19
.10.1109/84.982858
33.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
,
2002
, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
(
1
), pp.
53
64
.10.1016/S0894-1777(02)00107-3
34.
Zhu
,
Y.
,
Antao
,
D. S.
,
Bian
,
D. W.
,
Rao
,
S. R.
,
Sircar
,
J. D.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2017
, “
Suppressing High-Frequency Temperature Oscillations in Microchannels With Surface Structures
,”
Appl. Phys. Lett.
,
110
(
3
), p.
033501
.10.1063/1.4974048
35.
Zhu
,
Y.
,
Antao
,
D. S.
,
Chu
,
K.-H.
,
Chen
,
S.
,
Hendricks
,
T. J.
,
Zhang
,
T.
, and
Wang
,
E. N.
,
2016
, “
Surface Structure Enhanced Microchannel Flow Boiling
,”
ASME J. Heat Transfer
,
138
(
9
), p.
091501
.10.1115/1.4033497
You do not currently have access to this content.