Abstract

This study is the first part of the development of improved micro pin fin heat sink (MPFHS) for the thermal management of modern microprocessor chip cooling. In the current numerical study, a new fluid flow distribution scheme for MPFHS has been proposed for triumphing over surface temperature nonuniformity problem—one of the most critical issues interfering with the thermal management of modern microprocessors chip cooling. It is established that fluid, if supplied from the confronting sides (front/side directions) of the MPFHS, helps in mitigating temperature nonuniformity and intensifies heat transfer rate. Fluid starts enjoying following paybacks on account of proposed change: the benefits of the developing flow even in adverse temperature zones of the conventional design, enriched secondary channels fluid flow, and rigorous mixing of the cooling fluid between the primary and the secondary channels. Two front facing multi-inlet designs (MPFHSMI,F and MPFHSMI,FH) and one side facing multi-inlet design (MPFHSMI,SH) are conceptualized and compared with the conventional design MPFHSCD. Base surface temperature nonuniformity reduces 7.6 °C, 24 °C, and 7.4 °C by the MPFHSMI,F, MPFHSMI,FH, and MPFHSMI,SH designs, respectively. Average Nusselt number for the cases MPFHSMI,F, MPFHSMI,FH, and MPFHSMI,SH is found 26.7%, 52.3%, and 70.9% higher than the conventional design of MPFHS. Overall thermal performance factor of one design MPFHSMI,FH is found 1.66 at the applied heat flux of 125 W/cm2.

References

1.
Moore
,
G. E.
,
1965
, “
Cramming More Components Onto Integra Circuits
,”
Electronics
,
38
(
8
), pp.
114
117
.10.1109/JPROC.1998.658762
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
McWilliams
,
A.
,
2014
, “
The Market for Thermal Management Technologies
,” BCC Research, Wellesley, MA, Report No. SMC024 J.
4.
Tonkovich
,
A. Y.
,
Zilka
,
J. L.
,
LaMont
,
M. J.
,
Wang
,
Y.
, and
Wegeng
,
R. S.
,
1999
, “
Microchannel Reactors for Fuel Processing Applications: I—Water Gas Shift Reactor
,”
Chem. Eng. Sci.
,
54
(
13–14
), pp.
2947
2951
.10.1016/S0009-2509(98)00346-7
5.
Nacke
,
R.
,
Northcutt
,
B.
, and
Mudawar
,
I.
,
2011
, “
Theory and Experimental Validation of Cross-Flow Micro-Channel Heat Exchanger Module With Reference to High Mach Aircraft Gas Turbine Engines
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1224
1235
.10.1016/j.ijheatmasstransfer.2010.10.028
6.
Wang
,
Z.
,
Wang
,
Y.
,
Zhang
,
J.
, and
Zhang
,
B.
,
2014
, “
Overview of the Key Technologies of Combined Cycle Engine Precooling Systems and the Advanced Applications of Micro-Channel Heat Transfer
,”
Aerosp. Sci. Technol.
,
39
, pp.
31
39
.10.1016/j.ast.2014.08.008
7.
Visaria
,
M.
,
Mudawar
,
I.
,
Pourpoint
,
T.
, and
Kumar
,
S.
,
2010
, “
Study of Heat Transfer and Kinetics Parameters Influencing the Design of Heat Exchangers for Hydrogen Storage in High-Pressure Metal Hydrides
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2229
2239
.10.1016/j.ijheatmasstransfer.2009.12.010
8.
Beach
,
R.
,
Benett
,
W. J.
,
Freitas
,
B. L.
,
Mundinger
,
D.
,
Comaskey
,
B. J.
,
Solarz
,
R. W.
, and
Emanuel
,
M. A.
,
1992
, “
Modular Microchannel Cooled Heatsinks for High Average Power Laser Diode Arrays
,”
IEEE J. Quantum Electron.
,
28
(
4
), pp.
966
976
.10.1109/3.135215
9.
Missaggia
,
L. J.
,
Walpole
,
J. N.
,
Liau
,
Z. L.
, and
Phillips
,
R. J.
,
1989
, “
Microchannel Heat Sinks for Two-Dimensional High-Power-Density Diode Laser Arrays
,”
IEEE J. Quantum Electron.
,
25
(
9
), pp.
1988
1992
.10.1109/3.35223
10.
Kim
,
S. J.
, and
Kim
,
D.
,
1999
, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
639
645
.10.1115/1.2826027
11.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
12.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
13.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
14.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
15.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
16.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
17.
Joshi
,
Y.
, and
Wei
,
X.
,
2005
, “
Micro and Meso Scale Compact Heat Exchangers in Electronics Thermal Management-A Review
,”
Proceedings of Fifth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology
, Hoboken, NJ, Sept. 11–16, Paper No. CHE2005—22.
18.
Cheng
,
Y. J.
,
2007
, “
Numerical Simulation of Stacked Microchannel Heat Sink With Mixing-Enhanced Passive Structure
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
295
303
.10.1016/j.icheatmasstransfer.2006.12.007
19.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
,
2005
, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,”
Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium
, San Jose, CA, Mar. 15–17, pp.
8
15
.10.1109/STHERM.2005.1412152
20.
Hong
,
F.
, and
Cheng
,
P.
,
2009
, “
Three Dimensional Numerical Analyses and Optimization of Offset Strip-Fin Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
7
), pp.
651
656
.10.1016/j.icheatmasstransfer.2009.02.015
21.
Khoshvaght-Aliabadi
,
M.
,
Sartipzadeh
,
O.
,
Pazdar
,
S.
, and
Sahamiyan
,
M.
,
2017
, “
Experimental and Parametric Studies on a Miniature Heat Sink With Offset-Strip Pins and Al2O3/Water Nanofluids
,”
Appl. Therm. Eng.
,
111
, pp.
1342
1352
.10.1016/j.applthermaleng.2016.10.035
22.
Wang
,
X.-Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets for Cooling of a Rectangular Heat Sink
,”
Int. J. Therm. Sci.
,
45
(
11
), pp.
1103
1112
.10.1016/j.ijthermalsci.2006.01.010
23.
Xu
,
P.
,
Wang
,
X. Q.
,
Mujumdar
,
A. S.
,
Yap
,
C.
, and
Yu
,
B. M.
,
2009
, “
Thermal Characteristics of Tree-Shaped Microchannel Nets With/Without Loops
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2139
2147
.10.1016/j.ijthermalsci.2009.03.018
24.
Vasilev
,
M. P.
,
Abiev
,
R. S.
, and
Kumar
,
R.
,
2019
, “
Effect of Microchannel Heat Sink Configuration on the Thermal Performance and Pumping Power
,”
Int. J. Heat Mass Transfer
,
141
, pp.
845
854
.10.1016/j.ijheatmasstransfer.2019.07.031
25.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
26.
Ghaedamini
,
H.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2013
, “
Developing Forced Convection in Converging–Diverging Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
491
499
.10.1016/j.ijheatmasstransfer.2013.06.036
27.
Dehghan
,
M.
,
Daneshipour
,
M.
,
Valipour
,
M. S.
,
Rafee
,
R.
, and
Saedodin
,
S.
,
2015
, “
Enhancing Heat Transfer in Microchannel Heat Sinks Using Converging Flow Passages
,”
Energy Convers. Manag.
,
92
, pp.
244
250
.10.1016/j.enconman.2014.12.063
28.
John
,
T. J.
,
Mathew
,
B.
, and
Hegab
,
H.
,
2010
, “
Parametric Study on the Combined Thermal and Hydraulic Performance of Single Phase Micro Pin-Fin Heat Sinks: Part I—Square and Circle Geometries
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2177
2190
.10.1016/j.ijthermalsci.2010.06.011
29.
Yadav
,
V.
,
Baghel
,
K.
,
Kumar
,
R.
, and
Kadam
,
S. T.
,
2016
, “
Numerical Investigation of Heat Transfer in Extended Surface Microchannels
,”
Int. J. Heat Mass Transfer
,
93
, pp.
612
622
.10.1016/j.ijheatmasstransfer.2015.10.023
30.
Raja
,
N.
,
Mohammed
,
H. A.
, and
Lim
,
C. W.
,
2014
, “
Thermal and Hydraulic Characteristics of Nanofluid in a Triangular Grooved Microchannel Heat Sink (TGMCHS)
,”
Appl. Math. Comput.
,
246
, pp.
168
183
.10.1016/j.amc.2014.07.087
31.
Manay
,
E.
, and
Sahin
,
B.
,
2016
, “
The Effect of Microchannel Height on Performance of Nanofluids
,”
Int. J. Heat Mass Transfer
,
95
, pp.
307
320
.10.1016/j.ijheatmasstransfer.2015.12.015
32.
Wang
,
G.
,
Niu
,
D.
,
Xie
,
F.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Ding
,
G.
,
2015
, “
Experimental and Numerical Investigation of a Microchannel Heat Sink (MCHS) With Micro-Scale Ribs and Groves for Chip Cooling
,”
Appl. Therm. Eng.
,
85
, pp.
61
70
.10.1016/j.applthermaleng.2015.04.009
33.
Deng
,
D.
,
Wan
,
W.
,
Tang
,
Y.
,
Shao
,
H.
, and
Huang
,
Y.
,
2015
, “
Experimental and Numerical Study of Thermal Enhancement in Reentrant Copper Microchannels
,”
Int. J. Heat Mass Transfer
,
91
, pp.
656
670
.10.1016/j.ijheatmasstransfer.2015.08.025
34.
Wang
,
G.
,
Qian
,
N.
, and
Ding
,
G.
,
2019
, “
Heat Transfer Enhancement in Microchannel Heat Sink With Bidirectional Rig
,”
Int. J. Heat Mass Transfer
,
136
, pp.
597
609
.10.1016/j.ijheatmasstransfer.2019.02.018
35.
Deng, B., Qiu, Y., Kim, C. N.,
2010, “An Improved Porous Medium for Microchannel Heat Sinks
,”
Appl. Therm. Eng.,
30
(
16
), pp.
2512
2517
.10.1016/j.applthermaleng.2010.06.025
36.
Chuan
,
L.
,
Wang
,
X. D.
,
Wang
,
T. H.
, and
Yan
,
W. M.
,
2015
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sink Based on Porous Fin Design Concept
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
52
57
.10.1016/j.icheatmasstransfer.2015.04.005
37.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.10.1115/1.2137760
38.
Kishimoto
,
T.
, and
Saski
,
S.
,
1987
, “
Cooling Characteristics of Diamond-Shaped Interrupted Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
23
(
9
), pp.
456
457
.10.1049/el:19870328
39.
Peles
,
Y.
,
Koşar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.-J.
, and
Schneider
,
B.
,
2005
, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3615
3627
.10.1016/j.ijheatmasstransfer.2005.03.017
40.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3142
3155
.10.1016/j.ijheatmasstransfer.2006.02.013
41.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
419
430
.10.1115/1.1900139
42.
Qu
,
W.
,
2008
, “
Comparison of Thermal-Hydraulic Performance of Singe-Phase Micro-Pin-Fin and Micro-Channel Heat Sinks
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
105
112
.10.1109/ITHERM.2008.4544260
43.
Prasher
,
R. S.
,
Dirner
,
J.
,
Chang
,
J. Y.
,
Myers
,
A.
,
Chau
,
D.
,
He
,
D.
, and
Prstic
,
S.
,
2007
, “
Nusselt Number and Friction Factor of Staggered Arrays of Low Aspect Ratio Micropin-Fins Under Cross Flow for Water as Fluid
,”
ASME J. Heat Transfer,
129
(
2
), pp.
141
153
.10.1115/1.2402179
44.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins: Part I—Heat Transfer Characteristics
,”
ASME J. Heat Trans
fer,
130
(
12
), p.
122402
.10.1115/1.2970080
45.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin-Fins: Part II—Pressure Drop Characteristics
,”
ASME J. Heat Transfer
,
130
(
12
), p.
124501
.10.1115/1.2970082
46.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2018
, “
Review on Heat and Fluid Flow in Micro Pin Fin Heat Sinks Under Single-Phase and Two-Phase Flow Conditions
,”
Nanoscale Microscale Thermophys. Eng.
,
22
(
3
), pp.
153
197
.10.1080/15567265.2018.1475525
47.
Lee
,
Y. J.
,
Lee
,
P. S.
, and
Chou
,
S. K.
,
2009
, “
Enhanced Microchannel Heat Sinks Using Oblique Fins
,”
ASME
Paper No. InterPACK2009-89059.10.1115/InterPACK2009-89059
48.
Ansari
,
D.
,
Husain
,
A.
, and
Kim
,
K. Y.
,
2010
, “
Optimization and Comparative Study on Oblique-and Rectangular-Fin Microchannel Heat Sinks
,”
J. Thermophys. Heat Transfer
,
24
(
4
), pp.
849
852
.10.2514/1.50162
49.
Shafeie
,
H.
,
Abouali
,
O.
,
Jafarpur
,
K.
, and
Ahmadi
,
G.
,
2013
, “
Numerical Study of Heat Transfer Performance of Single-Phase Heat Sinks With Micro Pin-Fin Structures
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
68
76
.10.1016/j.applthermaleng.2013.04.008
50.
Mei
,
D.
,
Lou
,
X.
,
Qian
,
M.
,
Yao
,
Z.
,
Liang
,
L.
, and
Chen
,
Z.
,
2014
, “
Effect of Tip Clearance on the Heat Transfer and Pressure Drop Performance in the Micro-Reactor With Micro-Pin–Fin Arrays at Low Reynolds Number
,”
Int. J. Heat Mass Transfer
,
70
, pp.
709
718
.10.1016/j.ijheatmasstransfer.2013.11.060
51.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
52.
Zhao
,
J.
,
Huang
,
S.
,
Gong
,
L.
, and
Huang
,
Z.
,
2016
, “
Numerical Study and Optimizing on Micro Square Pin-Fin Heat Sink for Electronic Cooling
,”
Appl. Therm. Eng.
,
93
, pp.
1347
1359
.10.1016/j.applthermaleng.2015.08.105
53.
Kuppusamy
,
N. R.
,
Saidur
,
R.
,
Ghazali
,
N. N. N.
, and
Mohammed
,
H. A.
,
2014
, “
Numerical Study of Thermal Enhancement in Micro Channel Heat Sink With Secondary Flow
,”
Int. J. Heat Mass Transfer
,
78
, pp.
216
223
.10.1016/j.ijheatmasstransfer.2014.06.072
54.
Abdoli
,
A.
,
Jimenez
,
G.
, and
Dulikravich
,
G. S.
,
2015
, “
Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes With a Hot Spot
,”
Int. J. Therm. Sci.
,
90
, pp.
290
297
.10.1016/j.ijthermalsci.2014.12.021
55.
Lorenzini
,
D.
,
Green
,
C.
,
Sarvey
,
T. E.
,
Zhang
,
X.
,
Hu
,
Y.
,
Fedorov
,
A. G.
,
Bakir
,
M. S.
, and
Joshi
,
Y.
,
2016
, “
Embedded Single Phase Microfluidic Thermal Management for Non-Uniform Heating and Hotspots Using Microgaps With Variable Pin Fin Clustering
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1359
1370
.10.1016/j.ijheatmasstransfer.2016.08.040
56.
Chiu
,
H. C.
,
Hsieh
,
R. H.
,
Wang
,
K.
,
Jang
,
J. H.
, and
Yu
,
C. R.
,
2017
, “
The Heat Transfer Characteristics of Liquid Cooling Heat Sink With Micro Pin Fins
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
174
180
.10.1016/j.icheatmasstransfer.2017.05.027
57.
Yang
,
D.
,
Wang
,
Y.
,
Ding
,
G.
,
Jin
,
Z.
,
Zhao
,
J.
, and
Wang
,
G.
,
2017
, “
Numerical and Experimental Analysis of Cooling Performance of Single-Phase Array Microchannel Heat Sinks With Different Pin-Fin Configurations
,”
Appl. Therm. Eng.
,
112
, pp.
1547
1556
.10.1016/j.applthermaleng.2016.08.211
58.
Vilarrubi
,
M.
,
Riera
,
S.
,
Ibañez
,
M.
,
Omri
,
M.
,
Laguna
,
G.
,
Frechette
,
L.
, and
Barrau
,
J.
,
2018
, “
Experimental and Numerical Study of Micro-Pin-Fin Heat Sinks With Variable Density for Increased Temperature Uniformity
,”
Int. J. Therm. Sci.
,
132
, pp.
424
434
.10.1016/j.ijthermalsci.2018.06.019
59.
Rezaee
,
M.
,
Aliabadi
,
M. K.
,
Arani
,
A. A. A.
, and
Mazloumi
,
S. H.
,
2019
, “
Heat Transfer Intensification in Pin-Fin Heat Sink by Changing Pin-Length/Longitudinal-Pitch
,”
Chem. Eng. Process. Intensif.
,
141
, p.
107544
.10.1016/j.cep.2019.107544
60.
Kewalramani
,
G. V.
,
Hedau
,
G.
,
Saha
,
S. K.
, and
Agrawal
,
A.
,
2019
, “
Study of Laminar Single Phase Frictional Factor and Nusselt Number in in-Line Micro Pin-Fin Heat Sink for Electronic Cooling Applications
,”
Int. J. Heat Mass Transfer
,
138
, pp.
796
808
.10.1016/j.ijheatmasstransfer.2019.04.118
61.
Pramuditya, S., 2011, “
Water Thermodynamic Properties
,” Indonesia, accessed Oct. 10, 2019, https://syeilendrapramuditya.wordpress.com/2011/08/20/water-thermodynamic-properties
62.
Anysys
, 2010, “
FLUENT Manual, ANSYS/FLUENT Release Version 13.3
,” ANSYS, Cannonsburg, PA.
63.
Jakob
,
M.
,
1938
, “
Heat Transfer and Flow Resistance in Cross Flow of Gases Over Tube Banks
,”
Trans. ASME
,
60
, pp.
384
386
.
64.
Cao
,
H. S.
,
Vanapalli
,
S.
,
Holland
,
H. J.
,
Vermeer
,
C. H.
, and
ter Brake
,
H. J. M.
,
2019
, “
Heat Transfer and Pressure Drop in Microchannels With Isotropically Etched Pillars at Sub-Ambinet Temperature
,”
Int. J. Refrig.
,
98
, pp.
334
342
.10.1016/j.ijrefrig.2018.10.005
65.
Yadav
,
Y.
,
Kumar
,
R.
, and
Narain
,
A.
,
2019
, “
Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
9
(
2
), pp.
247
161
.10.1109/TCPMT.2018.2851543
You do not currently have access to this content.