Abstract

Tube receiver with central corrugated insert was introduced as the absorber tube of parabolic trough receiver to increase the overall heat transfer performance of the tube receiver for parabolic trough solar collector (PTC) system. The Monte Carlo ray tracing method (MCRT) coupled with finite volume method (FVM) was adopted to investigate flow characteristics and the heat transfer performance of tube receiver for parabolic trough solar collector system. The numerical results were successfully validated with the empirical correlations existing in the literature. The numerical results indicated that the introduction of the corrugated insert inside the absorber tube of the parabolic trough receiver can effectively enhance the heat transfer performance, where the average Nusselt number can be increased up to 3.7 times compared to the smooth absorber. While the overall heat transfer performance factor can be found to be in the range of 1.3–2.6. The results indicate that the heat transfer increases with increasing corrugated insert twist ratio and increases also with decreasing pitch between two corrugations.

References

1.
Hussein
,
A. K.
,
2016
, “
Applications of Nanotechnology to Improve the Performance of Solar Collectors—Recent Advances and Overview
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
767
792
.10.1016/j.rser.2016.04.050
2.
Hussein
,
A. K.
,
2015
, “
Applications of Nanotechnology in Renewable Energies-A Comprehensive Overview and Understanding
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
460
476
.10.1016/j.rser.2014.10.027
3.
Padilla
,
R. V.
,
Fontalvo
,
A.
,
Demirkaya
,
G.
,
Martinez
,
A.
, and
Quiroga
,
A. G.
,
2014
, “
Exergy Analysis of Parabolic Trough Solar Receiver
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
579
586
.10.1016/j.applthermaleng.2014.03.053
4.
Xiangtao
,
G.
,
Fuqiang
,
W.
,
Haiyan
,
W.
,
Jianyu
,
T.
,
Qingzhi
,
L.
, and
Huaizhi
,
H.
,
2017
, “
Heat Transfer Enhancement Analysis of Tube Receiver for Parabolic Trough Solar Collector With Pin Fin Arrays Inserting
,”
Sol. Energy
,
144
, pp.
185
202
.10.1016/j.solener.2017.01.020
5.
Huang
,
Z.
,
Li
,
Z.-Y.
,
Yu
,
G.-L.
, and
Tao
,
W.-Q.
,
2017
, “
Numerical Investigations on Fully-Developed Mixed Turbulent Convection in Dimpled Parabolic Trough Receiver Tubes
,”
Appl. Therm. Eng.
,
114
, pp.
1287
1299
.10.1016/j.applthermaleng.2016.10.012
6.
Ebrahim
,
S.
, and
Ranjbar
,
A. A.
,
2017
, “
Numerical Thermal Study on Effect of Porous Rings on Performance of Solar Parabolic Trough Collector
,”
Appl. Therm. Eng.
,
118
, pp.
807
816
.10.1016/j.applthermaleng.2017.03.021
7.
Benabderrahmane
,
A.
,
Benazza
,
A.
,
Laouedj
,
S.
, and
Solano
,
J. P.
,
2017
, “
Numerical Analysis of Compound Heat Transfer Enhancement by Single and Two-Phase Models in Parabolic Through Solar Receiver
,”
Mechanika
,
23
(
1
), pp.
55
61
.10.5755/j01.mech.23.1.14053
8.
Bellos
,
E.
,
Tzivanidis
,
C.
,
Antonopoulos
,
K. A.
, and
Gkinis
,
G.
,
2016
, “
Thermal Enhancement of Solar Parabolic Trough Collectors by Using Nanofluids and Converging-Diverging Absorber Tube
,”
Renewable Energy
,
94
, pp.
213
222
.10.1016/j.renene.2016.03.062
9.
Benabderrahmane
,
A.
,
Aminallah
,
M.
,
Laouedj
,
S.
,
Benazza
,
A.
, and
Solano
,
J. P.
,
2016
, “
Heat Transfer Enhancement in a Parabolic Trough Solar Receiver Using Longitudinal Fins and Nanofluids
,”
J. Therm. Sci.
,
25
(
5
), pp.
410
417
.10.1007/s11630-016-0878-3
10.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renewable Sustainable Energy Rev.
,
91
, pp.
358
375
.10.1016/j.rser.2018.03.091
11.
Chang
,
C.
,
Sciacovelli
,
A.
,
Wu
,
Z.
,
Li
,
X.
,
Li
,
Y.
,
Zhao
,
M.
,
Deng
,
J.
,
Wang
,
Z.
, and
Ding
,
Y.
,
2018
, “
Enhanced Heat Transfer in a Parabolic Trough Solar Receiver by Inserting Rods and Using Molten Salt as Heat Transfer Fluid
,”
Appl. Energy
,
220
, pp.
337
350
.10.1016/j.apenergy.2018.03.091
12.
Wang
,
P.
,
Liu
,
D. Y.
, and
Xu
,
C.
,
2013
, “
Numerical Study of Heat Transfer Enhancement in the Receiver Tube of Direct Steam Generation With Parabolic Trough by Inserting Metal Foams
,”
Appl. Energy
,
102
, pp.
449
460
.10.1016/j.apenergy.2012.07.026
13.
Cheng
,
Z. D.
,
He
,
Y. L.
, and
Cui
,
F. Q.
,
2012
, “
Numerical Study of Heat Transfer Enhancement by Unilateral Longitudinal Vortex Generators Inside Parabolic Trough Solar Receivers
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5631
5641
.10.1016/j.ijheatmasstransfer.2012.05.057
14.
Saha
,
S. K.
,
Dutta
,
A.
, and
Dhal
,
S. K.
,
2001
, “
Friction and Heat Transfer Characteristics of Laminar Swirl Flow Through a Circular Tube Fitted With Regularly Spaced Twisted-Tape Elements
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4211
4223
.10.1016/S0017-9310(01)00077-1
15.
Pandey
,
D. K.
,
Lee
,
R. B.
, III
, and
Paden
,
J.
,
1995
, “
Effects of Atmospheric Emissivity on Clear Sky Temperatures
,”
Atmos. Environ.
,
29
(
16
), pp.
2201
2204
.10.1016/1352-2310(94)00243-E
16.
García-Valladares
,
O.
, and
Velázquez
,
N.
,
2009
, “
Numerical Simulation of Parabolic Trough Solar Collector: Improvement Using Counter Flow Concentric Circular Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
597
609
.10.1016/j.ijheatmasstransfer.2008.08.004
17.
Mullick
,
S. C.
, and
Nanda
,
S. K.
,
1989
, “
An Improved Technique for Computing the Heat Loss Factor of a Tubular Absorber
,”
Sol Energy
,
42
(
1
), pp.
1
7
.10.1016/0038-092X(89)90124-2
18.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass-Transfer in Turbulent Pipe and Channel Flow
,”
Int. J. Chem. Eng.
,
16
(
2
), pp.
359
368
.
19.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advance in Heat Transfer
,
T. F.
Irvine
and
J. P.
Hartnett
, eds., Elsevier, Amsterdam, The Netherlands, pp.
503
–5
64
.
20.
Notter
,
R. H.
, and
Sleicher
,
C. A.
, A Solution to the Graetz Problem-III,
1972
, “
Fully Developed Region Heat Transfer Rates
,”
Chem. Eng. Sci.
,
27
(
11
), pp.
2073
2093
.10.1016/0009-2509(72)87065-9
21.
Incropera
,
F.
, and
Dewitt
,
D.
,
1990
,
Fundamentals of Heat and Mass Transfer
, 3rd ed.,
Wiley
,
New York
, p.
490
.
22.
Abbasian Arani
,
A. A.
, and
Amani
,
J.
,
2012
, “
Experimental Study on the Effect of TiO2/Water Nanofluid on Heat Transfer and Pressure Drop
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
107
115
.10.1016/j.expthermflusci.2012.04.017
23.
Webb
,
R. L.
, and
Kim
,
N. H.
,
2005
,
Principles of Enhanced Heat Transfer
, 2nd ed.,
Taylor & Francis
,
Boca Raton, FL
.
You do not currently have access to this content.