Abstract

The paper presents a numerical study of the effect of rotation on convection and heat transport in ferromagnetic liquids. The conditions for validity of principle of exchange of stabilities have been identified by means of linear stability analysis. The nonlinear stability analysis has been done using the streamline formulation. The systems of equations derived with the help of minimal Fourier series representation are analogous to those of the Lorenz model. The effect of different parameters on heat transport has been quantified through the average Nusselt number obtained from the solution of the scaled Lorenz model. Certain unusual effects of buoyancy magnetic parameter and nonbuoyancy magnetic parameter on heat transport are reported.

References

References
1.
Rosensweig
,
R. E.
,
2014
,
Ferrohydrodynamics
,
Dover Publications, Inc., New York.
2.
Finlayson
,
B. A.
,
1970
, “
Convective Instability of Ferromagnetic Fluids
,”
J. Fluid Mech.
,
40
(
04
), pp.
753
767
.10.1017/S0022112070000423
3.
Lalas
,
D. P.
, and
Carmi
,
S.
,
1971
, “
Thermoconvective Stability of Ferrofluids
,”
Phys. Fluids
,
14
(
2
), pp.
436
438
.10.1063/1.1693446
4.
Shliomis
,
M. I.
,
1975
, “
Convective Instability of a Ferrofluid
,”
Fluid Dyn.
,
8
(
6
), pp.
957
961
.10.1007/BF01014273
5.
Bashtovoi
,
V.
, and
Pavlinov
,
M. I.
,
1978
, “
Convective Stability of a Layer of Magnetizable Liquid With Solid Boundaries
,”
J. Eng. Phys.
,
35
(
2
), pp.
973
978
.10.1007/BF00860224
6.
Stiles
,
P. J.
, and
Kagan
,
M.
,
1990
, “
Thermoconvective Instability of a Ferrofluid in a Strong Magnetic Field
,”
J. Colloid Interface Sci.
,
134
(
2
), pp.
435
448
.10.1016/0021-9797(90)90154-G
7.
Straughan
,
B.
,
1992
, “
The Energy Method
,”
Stability and Nonlinear Convection
, 2nd ed.,
Springer
,
New York
.
8.
Berkovski
,
B.
, and
Bashtovoi
,
V.
, eds.,
1996
,
Magnetic Fluids and Applications Handbook
,
Begell House
,
New York
.
9.
Odenbach
,
S.
,
2002
,
Ferrofluids: Magnetically Controllable Fluids and Their Applications
,
Springer
,
New York
.
10.
Gupta
,
M. D.
, and
Gupta
,
A. S.
,
1979
, “
Convective Instability of a Layer of a Ferromagnetic Fluid Rotating About a Vertical Axis
,”
Int. J. Eng. Sci.
,
17
(
3
), pp.
271
277
.10.1016/0020-7225(79)90090-9
11.
Bhattacharyya
,
S. P.
, and
Abbas
,
M.
,
1986
, “
Convective Instability of a Rotating Layer of Ferromagnetic Fluid
,”
Proc. Indian Acad. Sci., Math. Sci.
,
95
(
1
), pp.
23
30
.10.1007/BF02837244
12.
Sekhar
,
G. N.
,
1990
, “
Convection in Magnetic Fluids
,” Ph.D. thesis, Bangalore University, Bangalore, India.
13.
Venkatasubramanian
,
S.
, and
Kaloni
,
P. N.
,
1994
, “
Effects of Rotation on the Thermoconvective Instability of a Horizontal Layer of Ferrofluids
,”
Int. J. Eng. Sci
,.,
32
(
2
), pp.
237
256
.10.1016/0020-7225(94)90004-3
14.
Auernhammer
,
G. K.
, and
Brand
,
H. R.
,
2000
, “
Thermal Convection in a Rotating Layer of a Magnetic Fluid
,”
Eur. Phys. J. B
,
16
(
1
), pp.
157
168
.10.1007/s100510070261
15.
Vaidyanathan
,
G.
,
Sekar
,
R.
, and
Ramanathan
,
A.
,
2002
, “
Effect of Magnetic Field Dependent Viscosity on Ferroconvection in Rotating Medium
,”
Indian J. Pure Appl. Phys.
,
40
(
3
), pp.
159
165
. http://nopr.niscair.res.in/handle/123456789/25417
16.
Kaloni
,
P. N.
, and
Lou
,
J. X.
,
2004
, “
Weakly Nonlinear Instability of a Ferromagnetic Fluid Rotating About a Vertical Axis
,”
J. Magn. Magn. Mater.
,
284
, pp.
54
68
.10.1016/j.jmmm.2004.06.022
17.
Siddheshwar
,
P. G.
,
Suthar
,
O. P.
, and
Kanchana
,
C.
,
2019
, “
Finite-Amplitude Ferro-Convection and Electro-Convection in a Rotating Fluid
,”
SN Appl. Sci.
,
1
(
12
), p.
1542
.10.1007/s42452-019-1549-2
18.
Laroze
,
D.
,
Pérez
,
L. M.
,
Bragard
,
J.
,
Cordaro
,
E. G.
, and
Martinez-Mardones
,
J.
,
2011
, “
Amplitude Equation for Stationary Convection in a Rotating Viscoelastic Magnetic Fluid
,”
Magnetohydrodynamics
,
47
(
2
), pp.
159
165
.10.22364/mhd.47.2.7
19.
Pérez
,
L. M.
,
Laroze
,
D.
,
Díaz
,
P.
,
Martinez-Mardones
,
J.
, and
Mancini
,
H. L.
,
2014
, “
Rotating Convection in a Viscoelastic Magnetic Fluid
,”
J. Magn. Magn. Mater.
,
364
, pp.
98
105
.10.1016/j.jmmm.2014.04.027
20.
Ryskin
,
A.
,
Müller
,
H. W.
, and
Pleiner
,
H.
,
2003
, “
Thermodiffusion Effects in Convection of Ferrofluids
,”
Magnetohydrodynamics
,
39
(
1
), pp.
53
58
.http://www.mhd.sal.lv/contents/2003/1/MG.39.1.10.R.html
21.
Laroze
,
D.
,
Martínez-Mardones
,
J.
,
Bragard
,
J.
, and
Vargas
,
P.
,
2006
, “
Convection in a Rotating Binary Ferrofluid
,”
Phys. A
,
371
(
1
), pp.
46
49
.10.1016/j.physa.2006.04.090
22.
Laroze
,
D.
,
Martinez-Mardones
,
J.
,
Pérez
,
L. M.
, and
Rameshwar
,
Y.
,
2009
, “
Amplitude Equation for Stationary Convection in a Rotating Binary Ferrofluid
,”
Int. J. Bifurcat. Chaos
,
19
(
08
), pp.
2755
2764
.10.1142/S0218127409024463
23.
Siddheshwar
,
P. G.
,
Sekhar
,
G. N.
, and
Jayalatha
,
G.
,
2010
, “
Effect of Time-Periodic Vertical Oscillations of the Rayleigh–Bénard System on Nonlinear Convection in Viscoelastic Liquids
,”
J. Non-Newtonian Fluid Mech.
,
165
(
19–20
), pp.
1412
1418
.10.1016/j.jnnfm.2010.07.008
24.
Laroze
,
D.
,
Siddheshwar
,
P. G.
, and
Pleiner
,
H.
,
2013
, “
Chaotic Convection in a Ferrofluid
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
9
), pp.
2436
2447
.10.1016/j.cnsns.2013.01.016
25.
Siddheshwar
,
P. G.
, and
Stephen Titus
,
P.
,
2013
, “
Nonlinear Rayleigh-Bénard Convection With Variable Heat Source
,”
ASME J. Heat Transfer
,
135
(
12
), p.
122502
.10.1115/1.4024943
26.
Siddheshwar
,
P. G.
, and
Kanchana
,
C.
,
2017
, “
Unicellular Unsteady Rayleigh–Bénard Convection in Newtonian Liquids and Newtonian Nanoliquids Occupying Enclosures: New Findings
,”
Int. J. Mech. Sci.
,
131–132
, pp.
1061
1072
.10.1016/j.ijmecsci.2017.07.050
27.
Siddheshwar
,
P. G.
, and
Kanchana
,
C.
,
2018
, “
A Study of Unsteady, Unicellular Rayleigh–Bénard Convection of Nanoliquids in Enclosures Using Additional Modes
,”
J. Nanofluids
,
7
(
4
), pp.
791
800
.10.1166/jon.2018.1483
You do not currently have access to this content.