Abstract

Stresses result when polymer feed stock is extruded through the nozzle of a three-dimensional (3D) printer, causing undesirable surface roughness called “sharkskin,” which hinders effective bonding to the substrate. A promising method to remove the sharkskin is to reheat the polymer after extrusion. However, questions remain about the appropriate design parameters to guarantee success. A mathematical model is presented for this system, and both amorphous and crystalline polymers are examined. The former is a heat transfer problem; the latter a Stefan problem. Several effectiveness conditions are considered, including exit temperature and a duration condition related to the polymer relaxation time. Our results provide guidance on designing effective postextrusion heaters.

References

References
1.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
, 1st ed.,
Springer Publishing Company
,
New York
.
2.
Miller
,
E.
,
Lee
,
S. J.
, and
Rothstein
,
J. P.
,
2006
, “
The Effect of Temperature Gradients on the Sharkskin Surface Instability in Polymer Extrusion Through a Slit Die
,”
Rheol. Acta
,
45
(
6
), pp.
943
950
.10.1007/s00397-006-0086-2
3.
Grant
,
M.
,
Shore
,
J.
,
Ronis
,
D.
, and
Piché
,
L.
,
1997
, “
Theory of Melt Fracture Instabilities in the Capillary Flow of Polymer Melts
,”
Phys. Rev. E
,
55(
3), pp.
2976
2992
.10.1103/PhysRevE.55.2976
4.
Wilson
,
I.
, and
Rough
,
S.
,
2006
, “
Exploiting the Curious Characteristics of Dense Solid–Liquid Pastes
,”
Chem. Eng. Sci.
,
61
(
13
), pp.
4147
4154
.10.1016/j.ces.2005.10.032
5.
Prajapati
,
H.
,
Ravoori
,
D.
, and
Jain
,
A.
,
2018
, “
Measurement and Modeling of Filament Temperature Distribution in the Standoff Gap Between Nozzle and Bed in Polymer-Based Additive Manufacturing
,”
Addit. Manuf.
,
24
, pp.
224
231
.10.1016/j.addma.2018.09.030
6.
Mackay
,
M. E.
,
Swain
,
Z. R.
,
Banbury
,
C. R.
,
Phan
,
D. D.
, and
Edwards
,
D. A.
,
2017
, “
The Performance of the Hot End in a Plasticating 3D Printer
,”
J. Rheol.
,
61
(
2
), pp.
229
236
.10.1122/1.4973852
7.
Phan
,
D. D.
,
Swain
,
Z. R.
, and
Mackay
,
M. E.
,
2018
, “
Rheological and Heat Transfer Effects in Fused Filament Fabrication
,”
J. Rheol.
,
62
(
5
), pp.
1097
1107
.10.1122/1.5022982
8.
Edwards
,
D. A.
,
Mackay
,
M. E.
,
Swain
,
Z. R.
,
Banbury
,
C. R.
, and
Phan
,
D. D.
,
2019
, “
Maximal 3D Printing Extrusion Rates
,”
IMA J. Appl. Math.
,
84
(
5
), pp.
1022
1043
.10.1093/imamat/hxz024
9.
Lotero
,
F.
,
Couenne
,
F.
,
Maschke
,
B.
, and
Sbarbaro
,
D.
,
2017
, “
Distributed Parameter Bi-Zone Model With Moving Interface of an Extrusion Process and Experimental Validation
,”
Math. Comput. Modell. Dyn. Syst.
,
23
(
5
), pp.
504
522
.10.1080/13873954.2016.1278393
10.
Mu
,
Y.
,
Zhao
,
G.
,
Wu
,
X.
,
Hang
,
L.
, and
Chu
,
H.
,
2015
, “
Continuous Modeling and Simulation of Flow-Swell-Crystallization Behaviors of Viscoelastic Polymer Melts in the Hollow Profile Extrusion Process
,”
Appl. Math. Model.
,
39
(
3–4
), pp.
1352
1368
.10.1016/j.apm.2014.09.008
11.
Sandoval Murillo
,
J. L.
, and
Ganzenmueller
,
G. C.
,
2017
, “
A Convergence Analysis of the Affine Particle-in-Cell Method and Its Application in the Simulation of Extrusion Processes
,”
Five International Conference on Particle-Based Methods—Fundamentals and Applications (Particles 2017)
, pp.
397
408
.
12.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng. B
,
231
(
1
), pp.
96
117
.10.1177/0954405414567522
13.
Coasey
,
K.
,
Hart
,
K. R.
,
Wetzel
,
E.
,
Edwards
,
D.
, and
Mackay
,
M. E.
, “
Nonisothermal Welding in Fused Filament Fabrication
,” Addit. Manuf., accepted.
14.
Carrier
,
G. F.
, and
Pearson
,
C. E.
,
1988
,
Partial Differential Equations: Theory and Technique
,
Academic Press
,
New York
.
15.
Hill
,
J. M.
, and
Wu
,
Y. H.
,
1994
, “
On a Nonlinear Stefan Problem Arising in the Continuous Casting of Steel
,”
Acta Mech.
,
107
(
1–4
), pp.
183
198
.10.1007/BF01201828
16.
Alexiades
,
V.
, and
Solomon
,
A. D.
,
1992
,
Mathematical Modeling of Melting and Freezing Processes
,
Taylor & Francis
,
Washington, DC
.
17.
Pyda
,
M.
,
Bopp
,
R.
, and
Wunderlich
,
B.
,
2004
, “
Heat Capacity of Poly(Lactic Acid)
,”
J. Chem. Thermodyn.
,
36
(
9
), pp.
731
742
.10.1016/j.jct.2004.05.003
You do not currently have access to this content.