Abstract

Variable conductance heat pipes (VCHPs) are the main part of the MASCOT (mobile asteroid surface SCOuT) lander thermal control system (TCS). They provide variable conductivity by utilizing the heat transfer limitations. This allows the heat pipes to act as thermal switches without additional constructive elements, thus leveraging the simple and compact design of conventional heat pipes. Two cylindrical methanol–copper heat pipes with shell length of 0.482 m and 0.438 m and external diameter of 0.006 m, having copper discrete metal fiber wick and copper shell were constructed and verified in the temperature range between −75 and +60 °C. The purpose is to apply this design into the MASCOT TCS and to investigate the heat pipes' regulative characteristics and heat transfer limitations. VCHPs show a change of thermal resistivity from 70 K/W at a heat sink temperature of −60 °C, to 0.8 K/W at a heat sink temperature of +60 °C; with an obtained maximal heat transfer rate of 5 W and 16 W, respectively. It is found that the switching effect of the heat pipes is governed by the sonic velocity limitation, the saturation vapor pressure of the working fluid, and the maximal capillary pressure of the wick. The operation of the heat pipes as the part of the TCS has confirmed their variable thermal properties.

References

1.
Watanabe
,
S.
,
Tsuda
,
Y.
,
Yoshikawa
,
M.
,
Yoshikawa
,
M.
,
Tanaka
,
S.
,
Saiki
,
T.
, and
Nakazawa
,
S.
,
2017
, “
Hayabusa2 Mission Overview
,”
Space Sci. Rev.
,
208
(
1–4
), pp.
3
16
.10.1007/s11214-017-0377-1
2.
Jaumann
,
R.
,
Schmitz
,
N.
,
Koncz
,
A.
,
Michaelis
,
H.
,
Schroeder
,
S. E.
,
Mottola
,
S.
,
Trauthan
,
F.
,
Hoffmann
,
H.
,
Roatsch
,
T.
,
Jobs
,
D.
,
Kachlicki
,
J.
,
Pforte
,
B.
,
Terzer
,
R.
,
Tschentscher
,
M.
,
Weisse
,
S.
,
Mueller
,
U.
,
Perez-Prieto
,
L.
,
Broll
,
B.
,
Kruselburger
,
A.
,
Ho
,
T.-M.
,
Biele
,
J.
,
Ulamec
,
S.
,
Krause
,
C.
,
Grott
,
M.
,
Bibring
,
J.-P.
,
Watanabe
,
S.
,
Sugita
,
S.
,
Okada
,
T.
,
Yoshikawa
,
M.
, and
Yabuta
,
H.
,
2017
, “
The Camera of the MASCOT Asteroid Lander on Board Hayabusa
,”
Space Sci. Rev.
,
208
(
1–4
), pp.
375
400
.10.1007/s11214-016-0263-2
3.
Bibring
,
J.-P.
,
Hamm
,
V.
,
Langevin
,
Y.
,
Pilorget
,
C.
,
Arondel
,
A.
,
Bouzit
,
M.
,
Chaigneau
,
M.
,
Crane
,
B.
,
Darié
,
A.
,
Evesque
,
C.
,
Hansotte
,
J.
,
Gardien
,
V.
,
Gonnod
,
L.
,
Leclech
,
J.-C.
,
Meslier
,
L.
,
Redon
,
T.
,
Tamiatto
,
C.
,
Tosti
,
S.
, and
Thoores
,
N.
,
2017
, “
The MicrOmega Investigation Onboard Hayabusa2
,”
Space Sci. Rev.
,
208
(
1–4
), pp.
401
412
.10.1007/s11214-017-0335-y
4.
Hercik
,
D.
,
Auster
,
H.-U.
,
Blum
,
J.
,
Fornaçon
,
K.-H.
,
Fujimoto
,
M.
,
Gebauer
,
K.
,
Güttler
,
C.
,
Hillenmaier
,
O.
,
Hördt
,
A.
,
Liebert
,
E.
,
Matsuoka
,
A.
,
Nomura
,
R.
,
Richter
,
I.
,
Stoll
,
B.
,
Weiss
,
B. P.
, and
Glassmeier
,
K.-H.
,
2017
, “
The MASCOT Magnetometer
,”
Space Sci. Rev.
,
208
(
1–4
), pp.
433
449
.10.1007/s11214-016-0236-5
5.
Grott
,
M.
,
Knollenberg
,
J.
,
Borgs
,
B.
,
Hänschke
,
F.
,
Kessler
,
E.
,
Helbert
,
J.
,
Maturilli
,
A.
, and
Müller
,
N.
,
2017
, “
The MASCOT Radiometer Mara for the Hayabusa 2 Mission
,”
Space Sci. Rev.
,
208
(
1–4
), pp.
413
431
.10.1007/s11214-016-0272-1
6.
Celotti
,
L.
,
Solyga
,
M.
,
Nadalini
,
R.
,
Kravets
,
V.
,
Khairnasov
,
S.
,
Baturkin
,
V.
,
Lange
,
C.
,
Findlay
,
R.
,
Ziach
,
C.
, and
Ho
,
T.
,
2015
, “
MASCOT Thermal Subsystem Design Challenges and Solution for Contrasting Requirements
,”
Proceedings of 45th International Conference on Environmental Systems
, Bellevue, WA, July 12–16, Paper No.
ICES-2015-83
.https://ttu-ir.tdl.org/handle/2346/64366
7.
Baturkin
,
V.
,
Zhuik
,
S.
, and
Savina
,
V.
,
1990
, “
Development and Research of Heat Pipes for Thermal Control System of Scientific Apparatus
,”
Proceedings of IV International Seminar “Scientific Space Instrumentation
, Frunze, USSR, Sept. 18–24, 1989, pp.
201
208
.
8.
Baturkin
,
V.
,
Zhuk
,
S.
,
Vojta
,
J.
,
Lura
,
F.
,
Biering
,
B.
, and
Lotzke
,
H. G.
,
2003
, “
Elaboration of Thermal Control Systems on Heat Pipes for Microsatellites Magion 4, 5 and BIRD
,”
Appl. Therm. Eng.
,
23
(
9
), pp.
1109
1117
.10.1016/S1359-4311(03)00040-1
9.
Kravets
,
V.
,
Alekseik
,
Y.
,
Alekseik
,
O.
,
Khairnasov
,
S.
,
Baturkin
,
V.
,
Ho
,
T.
, and
Celotti
,
L.
,
2017
, “
Heat Pipes With Variable Thermal Conductance Property Developed for Space Applications
,”
J. Mech. Sci. Technol.
,
31
(
6
), pp.
2613
2620
.10.1007/s12206-017-0503-8
10.
Faghri
,
A.
,
2016
,
Heat Pipe Science and Technology
, 2nd ed.,
Global Digital Press
, Columbia, MO.
11.
Semena
,
M. G.
,
1979
, “
Method of Computing the Thermal Resistance of Low-Temperature Heat Pipes With Metal-Fiber Wicks
,”
J. Eng. Phys.
,
36
(
3
), pp.
287
292
.10.1007/BF00861912
12.
Busse
,
C. A.
,
1973
, “
Theory of the Ultimate Heat Transfer Limit of Cylindrical Heat Pipes
,”
Int. J. Heat Mass Transfer
,
16
(
1
), pp.
169
186
.10.1016/0017-9310(73)90260-3
13.
Kemme
,
J. E.
,
1969
, “
Ultimate Heat-Pipe Performance
,”
IEEE Trans. Electron Devices
,
16
(
8
), pp.
717
723
.10.1109/T-ED.1969.16845
14.
Levy
,
E. K.
,
1968
, “
Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressures
,”
ASME J. Eng. Ind.
,
90
(
4
), pp.
547
552
.10.1115/1.3604687
15.
Bertossi
,
R.
,
Romestant
,
C.
,
Ayel
,
V.
, and
Bertin
,
Y.
,
2012
, “
Theoretical Study and Review on the Operational Limitations Due to Vapor Flow in Heat Pipes
,”
Front. Heat Pipes
,
3
, p.
023001
.10.5098/fhp.v3.2.3001
16.
Semena
,
M. G.
, and
Gershuni
,
A.
,
1981
, “
Analysis of the Capillary-Transport Characteristics of Metal-Fiber Structures
,”
J. Eng. Phys.
,
41
(
1
), pp.
683
688
.10.1007/BF00824808
17.
Kim
,
B. H.
, and
Peterson
,
G. P.
,
1995
, “
Analysis of the Critical Weber Number at the Onset of Liquid Entrainment in Capillary-Driven Heat Pipes
,”
Int. J. Heat Mass Transfer
,
38
(
8
), pp.
1427
1442
.10.1016/0017-9310(94)00249-U
18.
Kim
,
B. H.
, and
Peterson
,
G. P.
,
1994
, “
Theoretical and Physical Interpretation of Entrainment Phenomenon in Capillary-Driven Heat Pipes Using Hydrodynamic Instability Theories
,”
Int. J. Heat Mass Transfer
,
37
(
17
), pp.
2647
2660
.10.1016/0017-9310(94)90382-4
You do not currently have access to this content.