Abstract

Accurate quantification of local heat transfer coefficient (HTC) is imperative for design and development of heat exchangers for high heat flux dissipation applications. Liquid crystal and infrared thermography (IRT) are typically employed to measure detailed surface temperatures, where local HTC values are calculated by employing suitable conduction models, e.g., one-dimensional (1D) semi-infinite conduction model on a material with the low thermal conductivity and low thermal diffusivity. Often times, this assumption of 1D heat diffusion and ignoring its associated lateral conduction effects leads to significant errors in HTC determination. Prior studies have identified this problem and quantified the associated errors in HTC determination for some representative cooling concepts, by accounting for lateral heat diffusion. In this paper, we have presented a procedure for solution of three-dimensional (3D) transient conduction equation using alternating direction implicit (ADI) method and an error minimization routine to find accurate HTCs at relatively lower computational cost. Representative cases of a single jet and an array jet impingement under maximum crossflow condition have been considered here, for IRT and liquid crystal thermography, respectively. Results indicate that the globally averaged HTC obtained using the 3D model was consistently higher than the conventional 1D model by 7–14%, with deviation levels reaching as high as 20% near the stagnation region. Proposed methodology was computationally efficient and is recommended for studies aimed toward local HTC determination.

References

References
1.
Singh
,
P.
,
Ravi
,
B. V.
, and
Ekkad
,
S. V.
,
2016
, “
Experimental and Numerical Study of Heat Transfer Due to Developing Flow in a Two-Pass Rib Roughened Square Duct
,”
Int. J. Heat Mass Transfer
,
102
, pp.
1245
1256
.10.1016/j.ijheatmasstransfer.2016.07.015
2.
Ravi
,
B. V.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Numerical Investigation of Turbulent Flow and Heat Transfer in Two-Pass Ribbed Channels
,”
Int. J. Therm. Sci.
,
112
, pp.
31
43
.10.1016/j.ijthermalsci.2016.09.034
3.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2018
, “
Experimental and Numerical Investigation of Heat and Fluid Flow in a Square Duct Featuring Criss-Cross Rib Patterns
,”
Appl. Therm. Eng.
,
128
, pp.
415
425
.10.1016/j.applthermaleng.2017.09.036
4.
Zhang
,
M.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Rib Turbulator Heat Transfer Enhancements at Very High Reynolds Numbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
6
), p.
061014
.10.1115/1.4043465
5.
Singh
,
P.
,
Ji
,
Y.
, and
Ekkad
,
S. V.
,
2019
, “
Multi-Pass Serpentine Cooling Designs for Negating Coriolis Force Effect on Heat Transfer: 45-Degree Angled Rib Turbulated Channels
,”
ASME J. Turbomach.
,
141
(
7
), p.
071003
.10.1115/1.4042648
6.
Yang
,
L.
,
Singh
,
P.
,
Tyagi
,
K.
,
Pandit
,
J.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2018
, “
Experimental Investigation of Rotational Effects on Heat Transfer Enhancement Due to Crossflow-Induced Swirl Using Transient Liquid Crystal Thermography
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
3
), p.
031001
.10.1115/1.4038538
7.
Kaur
,
I.
,
Singh
,
P.
, and
Ekkad
,
S. V.
,
2019
, “
Thermal-Hydraulic Performance Enhancement by Combination of Rectangular Winglet Pair and V-Shaped Dimples
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p. 021013.10.1115/1.4044169
8.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
, Boca Raton, FL.
9.
Singh
,
P.
,
Zhang
,
M.
,
Ahmed
,
S.
,
Ramakrishnan
,
K. R.
, and
Ekkad
,
S.
,
2019
, “
Effect of Micro-Roughness Shapes on Jet Impingement Heat Transfer and Fin-Effectiveness
,”
Int. J. Heat Mass Transfer
,
132
, pp.
80
95
.10.1016/j.ijheatmasstransfer.2018.11.135
10.
Goldstein
,
R. J.
, and
Timmers
,
J. F.
,
1982
, “
Visualization of Heat Transfer From Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
25
(
12
), pp.
1857
1868
.10.1016/0017-9310(82)90108-9
11.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1985
, “The Measurement of Local Heat Transfer Coefficients in Blade Cooling Geometries,” AGARD Heat Transfer and Cooling in Gas Turbines, p. 8.
12.
Vedula, R. P., Metzger, D. E. and Bickford, W. B., 1988, “Effects of Lateral and Anisotropic Conduction on Determination of Local Convection Heat Transfer Characteristics With Transient Tests and Surface Coatings,” Winter Annual Meeting of ASME, HTD-I, pp. 21–27.
13.
Camci
,
C. C.
,
Kim
,
K. K.
, and
Hippensteele
,
S. A.
,
1992
, “
A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies
,”
ASME J. Turbomach.
,
114
(
4
), pp.
765
775
.10.1115/1.2928030
14.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1997
, “
Detailed Heat Transfer Distributions in Two-Pass Square Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2525
2537
.10.1016/S0017-9310(96)00318-3
15.
Ekkad
,
S. V.
,
Zapata
,
D. D.
, and
Han
,
J. C.
,
1997
, “
Film Effectiveness Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method
,”
ASME J. Turbomach.
,
119
(
3
), pp.
587
593
.10.1115/1.2841162
16.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.10.1007/s00348-010-0912-2
17.
Ekkad
,
S. V.
,
Ou
,
S.
, and
Rivir
,
R. B.
,
2004
, “
A Transient Infrared Thermography Method for Simultaneous Film Cooling Effectiveness and Heat Transfer Coefficient Measurements From a Single Test
,”
ASME J. Turbomach.
,
126
(
4
), pp.
597
603
.10.1115/1.1791283
18.
Ramesh
,
S.
,
Ramirez
,
D. G.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2016
, “
Analysis of Film Cooling Performance of Advanced Tripod Hole Geometries With and Without Manufacturing Features
,”
Int. J. Heat Mass Transfer
,
94
, pp.
9
19
.10.1016/j.ijheatmasstransfer.2015.11.033
19.
Xue
,
S.
,
Roy
,
A.
,
Ng
,
W. F.
, and
Ekkad
,
S. V.
,
2015
, “
A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
1
), p.
011016
.10.1115/1.4029098
20.
Ling
,
J. P. C. W.
,
Ireland
,
P. T.
, and
Turner
,
L.
,
2004
, “
A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction
,”
ASME J. Turbomach.
,
126
(
2
), pp.
247
258
.10.1115/1.1740777
21.
Lin
,
M.
, and
Wang
,
T.
,
2002
, “
A Transient Liquid Crystal Method Using a 3-D Inverse Transient Conduction Scheme
,”
Int. J. Heat Mass Transfer
,
45
(
17
), pp.
3491
3501
.10.1016/S0017-9310(02)00073-X
22.
Ryley
,
J. C.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2014
, “
Calculation of Heat Transfer Coefficient Distribution on 3D Geometries From Transient Liquid Crystal Experiments
,”
ASME
Paper No. GT2014-26973. 10.1115/GT2014-26973
23.
Nirmalan
,
N. V.
,
Bunker
,
R. S.
, and
Hedlung
,
C. R.
,
2002
, “
The Measurement of Full-Surface Internal Heat Transfer Coefficients for Turbine Airfoils Using a Non-Destructive Thermal Inertia Technique
,”
ASME
Paper No. GT2002-30199. 10.1115/GT2002-30199
24.
Brack
,
S.
,
Poser
,
R.
, and
von Wolfersdorf
,
J.
,
2016
, “
An Approach to Consider Lateral Heat Conduction Effects in the Evaluation Process of Transient Heat Transfer Measurements Using TLC
,”
Int. J. Therm. Sci.
,
107
, pp.
289
302
.10.1016/j.ijthermalsci.2016.03.028
25.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.10.1016/S0065-2717(06)39006-5
26.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.10.1115/1.3445306
27.
Kim, K., and Feng, S. S., 2016, “Thermal Mapping Using Infrared Thermography,” Application of Thermo-Fluidic Measurement Techniques, Butterworth-Heinemann, Cambridge, MA, pp.
215
250
.
28.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
29.
Singh
,
P.
, and
Ekkad
,
S. V.
,
2017
, “
Effects of Spent Air Removal Scheme on Internal-Side Heat Transfer in an Impingement-Effusion System at Low Jet-to-Target Plate Spacing
,”
Int. J. Heat Mass Transfer
,
108
, pp.
998
1010
.10.1016/j.ijheatmasstransfer.2016.12.104
30.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), p.
957
.10.1088/0957-0233/11/7/312
31.
Singh
,
P.
, and
Ekkad
,
S.
,
2017
, “
Experimental Study of Heat Transfer Augmentation in a Two-Pass Channel Featuring V-Shaped Ribs and Cylindrical Dimples
,”
Appl. Therm. Eng.
,
116
, pp.
205
216
.10.1016/j.applthermaleng.2017.01.098
32.
Singh
,
P.
,
Pandit
,
J.
, and
Ekkad
,
S. V.
,
2017
, “
Characterization of Heat Transfer Enhancement and Frictional Losses in a Two-Pass Square Duct Featuring Unique Combinations of Rib Turbulators and Cylindrical Dimples
,”
Int. J. Heat Mass Transfer
,
106
, pp.
629
647
.10.1016/j.ijheatmasstransfer.2016.09.037
33.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
A New Cooling Design for Rib Roughened Two-Pass Channel Having Positive Effects of Rotation on Heat Transfer Enhancement on Both Pressure and Suction Side Internal Walls of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
115
, pp.
6
20
.10.1016/j.ijheatmasstransfer.2017.07.128
34.
Singh
,
P.
,
Li
,
W.
,
Ekkad
,
S. V.
, and
Ren
,
J.
,
2017
, “
Experimental and Numerical Investigation of Heat Transfer Inside Two-Pass Rib Roughened Duct (AR= 1: 2) Under Rotating and Stationary Conditions
,”
Int. J. Heat Mass Transfer
,
113
, pp.
384
398
.10.1016/j.ijheatmasstransfer.2017.05.085
35.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Thermal Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
36.
Peaceman
,
D. W.
, and
Rachford
,
H. H.
, Jr.
,
1955
, “
The Numerical Solution of Parabolic and Elliptic Differential Equations
,”
J. Soc. Ind. Appl. Math.
,
3
(
1
), pp.
28
41
.10.1137/0103003
37.
Douglas
,
J.
, Jr.
, and
Gunn
,
J. E.
,
1964
, “
A General Formulation of Alternating Direction Methods—Part I: Parabolic and Hyperbolic Problems
,”
Numer. Math.
,
6
(
1
), pp.
428
453
.10.1007/BF01386093
38.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.10.1016/0017-9310(82)90131-4
39.
Hollworth
,
B. R.
, and
Gero
,
L. R.
,
1985
, “
Entrainment Effects on Impingement Heat Transfer—Part II: Local Heat Transfer Measurements
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
910
915
.10.1115/1.3247520
40.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.10.1115/1.3244224
You do not currently have access to this content.