Abstract

In the present paper, we consider the governing equation for generalized thermoelastic media under the effect of magnetic fleld, rotation, initial stress, and two-temperature parameter for Rayleigh wave in half-space. The secular equation of Rayleigh wave is also deduced using surface wave solution, which also satisfy the radiation condition for thermally insulated/isothermal surface. The velocity and amplitude attenuation factor of Rayleigh wave is also computed for a particular material. The effect of two-temperature, rotation, and initial stress parameters on velocity of propagation and amplitude attenuation factor is shown graphically.

References

References
1.
Biot
,
M. A.
,
1956
, “
Thermo-Elasticity and Irreversible Thermodynamics
,”
J. App. Phys.
,
2
, pp.
240
253
.10.1063/1.1722351
2.
Lord
,
H.
, and
Shulman
,
Y.
,
1967
, “
A Generalised Dynamical Theory of Thermo-Elasticity
,”
J. Mech. Phys. Solids
,
15
(
5
), pp.
299
309
.10.1016/0022-5096(67)90024-5
3.
Green
,
A. E.
, and
Lindsay
,
K. A.
,
1972
, “
Thermo-Elasticity
,”
J. Elast.
,
2
(
1
), pp.
1
7
.10.1007/BF00045689
4.
Ignaczak
,
J.
, and
Ostoja-Starzewski
,
M.
,
2009
,
Thermo-Elasticity With Finite Wave Speeds
,
Oxford University Press
,
Oxford, UK
.
5.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
,
1999
, “
Generalised Thermo-Elasticity
,”
J. Therm. Stresses
,
22
(
4–5
), pp.
451
476
.10.1080/014957399280832
6.
Lockett
,
F. J.
,
1958
, “
Effect of Thermal Properties of a Solid on the Velocity of Rayleigh Waves
,”
J. Mech. Phys. Solids
,
7
(
1
), pp.
71
75
.10.1016/0022-5096(58)90040-1
7.
Deresiewicz
,
H. A.
,
1961
, “
A Note on Thermoelastic Rayleigh Waves
,”
J. Mech. Phys. Solids
,
9
(
3
), pp.
191
195
.10.1016/0022-5096(61)90017-5
8.
Nayfeh
,
A.
, and
Nemat-Nasser
,
S.
,
1971
, “
Thermoelastic Waves in Solids With Thermal Relaxation
,”
Acta Mech.
,
12
(
1–2
), pp.
53
68
.10.1007/BF01178389
9.
Carroll
,
M. M.
,
1974
, “
A Note on Thermoelastic Surface Waves
,”
Res. Commun.
,
1
, pp.
61
65
.10.1016/0093-6413(74)90015-9
10.
Agarwal
,
V. K.
,
1978
, “
On Surface Waves in Generalised Thermo-Elasticity
,”
J. Elast.
,
8
(
2
), pp.
171
177
.10.1007/BF00052480
11.
Dawn
,
N. C.
, and
Chakraborty
,
S. K.
,
1988
, “
On Rayleigh Waves in Green-Lindsay's Model of Generalised Thermoelastic Media
,”
Indian J. Pure App. Math.
,
20
, pp.
276
283
.
12.
Montanaro
,
A.
,
1999
, “
On Singular Surfaces in Isotropic Linear Thermo-Elasticity With Initial Stress
,”
J. Acoust. Soc. Am.
,
106
(
3
), pp.
1586
1588
.10.1121/1.427154
13.
Othman
,
M. I. A.
, and
Song
,
Y.
,
2007
, “
Reflection of Plane Waves From an Elastic Solid Half-Space Under Hydrostatic Initial Stress Without Energy Dissipation
,”
Int. J. Solids Struct.
,
44
(
17
), pp.
5651
5664
.10.1016/j.ijsolstr.2007.01.022
14.
Singh
,
B.
,
Kumar
,
A.
, and
Singh
,
J.
,
2006
, “
Reflection of Generalised Thermoelastic Waves From a Solid Half-Space Under Hydrostatic Initial Stress
,”
Appl. Math. Comput.
,
177
(
1
), pp.
170
177
.10.1016/j.amc.2005.10.045
15.
Singh
,
B.
,
2008
, “
Effect of Hydrostatic Initial Stress on Waves in a Thermoelastic Solid Half-Space
,”
Appl. Math. Comput.
,
198
(
2
), pp.
494
505
.10.1016/j.amc.2007.08.072
16.
Singh
,
B.
,
2010
, “
Wave Propagation in an Initially Stressed Transversely Isotropic Thermoelastic Solid Half Space
,”
Appl. Math. Comput.
,
217
(
2
), pp.
705
715
.10.1016/j.amc.2010.06.008
17.
Abo-Dahab
,
S. M.
,
2011
, “
Reflection of P and SV Waves From a Stress-Free Surface Thermoelastic Half-Space Under the Influence of a Magnetic Field and Hydrostatic Initial Stress Without Energy Dissipation
,”
J. Vib. Control
,
17
(
14
), pp.
2212
2221
.10.1177/1077546311400228
18.
Abbas
,
I. A.
, and
Othman
,
M. I.
,
2012
, “
Generalised Thermoelastic Interaction in a Fibre-Reinforced Anisotropic Half Space Under Hydrostatic Initial Stress
,”
J. Vib. Control
,
18
(
2
), pp.
175
182
.10.1177/1077546311402529
19.
Othman
,
M. I.
, and
Atwa
,
S. Y.
,
2012
, “
Thermoelastic Plane Waves for an Elastic Solid Half-Space Under Hydrostatic Initial Stress of Type III
,”
Meccanica
,
47
(
6
), pp.
1337
1347
.10.1007/s11012-011-9517-y
20.
Chen
,
P. J.
, and
Gurtin
,
M. E.
,
1968
, “
On a Theory of Heat Conduction Involving Two-Temperatures
,”
Z. Angew. Math. Phys.
,
19
(
4
), pp.
614
627
.10.1007/BF01594969
21.
Chen
,
P. J.
,
Gurtin
,
M. E.
, and
Williams
,
W. O.
,
1968
, “
A Note on Non-Simple Heat Conduction
,”
Z. Angew. Math. Phys.
,
19
(
6
), pp.
969
970
.10.1007/BF01602278
22.
Chen
,
P. J.
,
Gurtin
,
M. E.
, and
Williams
,
W. O.
,
1969
, “
On the Thermodynamics of Non-Simple Elastic Materials With Two Temperatures
,”
Z. Angew. Math. Phys.
,
20
(
1
), pp.
107
112
.10.1007/BF01591120
23.
Warren
,
W. E.
, and
Chen
,
P. J.
,
1973
, “
Wave Propagation in the Two-Temperatures Theory of Thermo-Elasticity
,”
Acta Mech.
,
16
, pp. 21–33.10.1007/BF01177123
24.
Boley
,
B. A.
, and
Tolins
,
I. S.
,
1962
, “
Transient Coupled Thermo-Plastic Boundary Value Problems in the Half Space
,”
ASME J. Appl. Mech.
,
29
(
4
), pp.
637
646
.10.1115/1.3640647
25.
Kumari
,
S.
,
Bharti
., and
Singh
,
B.
,
2019
, “
Effects of Two-Temperature on Rayleigh Wave in Generalized Magneto-Thermoelastic Media With Hydrostatic Initial Stress
,”
ASME J. Heat Transfer
,
141
(
7
), p.
072002
.10.1115/1.4043677
26.
Youssef
,
H. M.
,
2006
, “
Theory of Two-Temperature Generalised Thermo-Elasticity
,”
IMA J. App. Math.
,
71
(
3
), pp.
383
390
.10.1093/imamat/hxh101
27.
Youssef
,
H. M.
,
2011
, “
Theory of Two-Temperature Thermo-Elasticity Without Energy Dissipation
,”
J. Therm. Stresses
,
34
(
2
), pp.
138
146
.10.1080/01495739.2010.511941
28.
Puri
,
P.
, and
Jordan
,
P. M.
,
2006
, “
On the Propagation of Harmonic Plane Waves Under the Two-Temperature Theory
,”
Int. J. Eng. Sci.
,
44
(
17
), pp.
1113
1126
.10.1016/j.ijengsci.2006.07.002
29.
Chandrasekharaiah
,
D. S.
, and
Srikantaiah
,
K. R.
,
1984
, “
On Temperature Rate Dependent Thermoelastic Rayleigh Waves in Half Space
,”
Gerlands Beitr. Geophys.
,
98
, pp.
133
141
.
30.
Youssef
,
H. M.
, and
Elsibai
,
K. A.
,
2015
, “
On the Theory of Two-Temperature Thermo-Elasticity Without Energy Dissipation of Green-Naghdi Model
,”
Appl. Anal.
,
94
(
10
), pp.
1997
2012
.10.1080/00036811.2014.961920
31.
Baksi
,
A.
,
Roy
,
B. K.
, and
Bera
,
R. K.
,
2006
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Generalized Magneto-Thermo Viscoelastic Medium in One Dimension
,”
Math. Comput. Model.
,
44
, pp.
1069
1079
.10.1016/j.mcm.2006.03.010
32.
Kumar
,
R.
,
Sharma
,
N.
, and
Lata
,
P.
,
2016
, “
Thermo-Mechanical Interactions in Transversely Isotropic Magneto-Thermoelastic Medium With Vacuum and With and Without Energy Dissipation With Combined Effects of Rotation, Vacuum and Two Temperatures
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6560
6575
.10.1016/j.apm.2016.01.061
33.
Agarwal
,
V. K.
,
1979
, “
On Plane Waves in Generalized Thermoelasticity
,”
Acta Mech.
,
31
(
3–4
), pp.
185
198
.10.1007/BF01176847
34.
Agarwal
,
V. K.
,
1979
, “
On Electro Magneto-Thermoelastic Plane Waves
,”
Acta Mech.
,
34
, pp.
181
191
.10.1007/BF01227983
35.
Schoenberg
,
M.
, and
Censor
,
D.
,
1973
, “
Elastic Waves in Rotating Media
,”
Q. Appl. Math.
,
31
, pp.
115
125
.10.1090/qam/99708
36.
Puri
,
P.
,
1976
, “
Plane Thermoelastic Waves in Rotating Media
,”
Bull Acad. Pol. Sci. Tech.
,
24
, pp.
103
110
.
37.
Choudhuri
,
S. K. R.
, and
Debnath
,
L.
,
1983
, “
Magneto-Thermoelastic Plane Waves in a Rotating Media
,”
Int. J. Eng. Sci.
,
21
, pp.
155
163
.10.1016/0020-7225(83)90007-1
38.
Choudhuri
,
S. K. R.
, and
Debnath
,
L.
,
1983
, “
Magneto-Elastic Plane Waves in Infinite Rotating Media
,”
ASME J. Appl. Mech.
,
50
(
2
), pp.
283
287
.10.1115/1.3167033
39.
Singh
,
B.
,
Kumari
,
S.
, and
Singh
,
J.
,
2012
, “
Rayleigh Wave in a Rotating in a Magneto-Thermo-Elastic Half-Plane
,”
J. Theor. Appl. Mech.
,
42
(
4
), pp.
75
92
.10.2478/v10254-012-0021-0
40.
Singh
,
B.
,
2013
, “
Propagation of Rayleigh Wave in a Two-Temperature Generalized Thermoelastic Solid Half-Space
,”
ISRN Geophys.
, pp.
857
937
.10.1155/2013/857937
41.
Singh
,
B.
, and
Bala
,
K.
,
2013
, “
On Rayleigh Wave in Two-Temperature Generalized Thermoelastic Medium Without Energy Dissipation
,”
Appl. Math.
,
4
(
1
), pp.
107
112
.10.4236/am.2013.41019
You do not currently have access to this content.