Abstract
In the present paper, we consider the governing equation for generalized thermoelastic media under the effect of magnetic fleld, rotation, initial stress, and two-temperature parameter for Rayleigh wave in half-space. The secular equation of Rayleigh wave is also deduced using surface wave solution, which also satisfy the radiation condition for thermally insulated/isothermal surface. The velocity and amplitude attenuation factor of Rayleigh wave is also computed for a particular material. The effect of two-temperature, rotation, and initial stress parameters on velocity of propagation and amplitude attenuation factor is shown graphically.
Issue Section:
Heat and Mass Transfer
References
1.
Biot
,
M. A.
, 1956
, “
Thermo-Elasticity and Irreversible Thermodynamics
,” J. App. Phys.
,
2
, pp. 240
–253
.10.1063/1.17223512.
Lord
,
H.
, and
Shulman
,
Y.
, 1967
, “
A Generalised Dynamical Theory of Thermo-Elasticity
,” J. Mech. Phys. Solids
,
15
(5
), pp. 299
–309
.10.1016/0022-5096(67)90024-53.
Green
,
A. E.
, and
Lindsay
,
K. A.
, 1972
, “
Thermo-Elasticity
,” J. Elast.
,
2
(1
), pp. 1
–7
.10.1007/BF000456894.
Ignaczak
,
J.
, and
Ostoja-Starzewski
,
M.
, 2009
, Thermo-Elasticity With Finite Wave Speeds
,
Oxford University Press
,
Oxford, UK
.5.
Hetnarski
,
R. B.
, and
Ignaczak
,
J.
, 1999
, “
Generalised Thermo-Elasticity
,” J. Therm. Stresses
,
22
(4–5
), pp. 451
–476
.10.1080/0149573992808326.
Lockett
,
F. J.
, 1958
, “
Effect of Thermal Properties of a Solid on the Velocity of Rayleigh Waves
,” J. Mech. Phys. Solids
,
7
(1
), pp. 71
–75
.10.1016/0022-5096(58)90040-17.
Deresiewicz
,
H. A.
, 1961
, “
A Note on Thermoelastic Rayleigh Waves
,” J. Mech. Phys. Solids
,
9
(3
), pp. 191
–195
.10.1016/0022-5096(61)90017-58.
Nayfeh
,
A.
, and
Nemat-Nasser
,
S.
, 1971
, “
Thermoelastic Waves in Solids With Thermal Relaxation
,” Acta Mech.
,
12
(1–2
), pp. 53
–68
.10.1007/BF011783899.
Carroll
,
M. M.
, 1974
, “
A Note on Thermoelastic Surface Waves
,” Res. Commun.
,
1
, pp. 61
–65
.10.1016/0093-6413(74)90015-910.
Agarwal
,
V. K.
, 1978
, “
On Surface Waves in Generalised Thermo-Elasticity
,” J. Elast.
,
8
(2
), pp. 171
–177
.10.1007/BF0005248011.
Dawn
,
N. C.
, and
Chakraborty
,
S. K.
, 1988
, “
On Rayleigh Waves in Green-Lindsay's Model of Generalised Thermoelastic Media
,” Indian J. Pure App. Math.
,
20
, pp. 276
–283
.12.
Montanaro
,
A.
, 1999
, “
On Singular Surfaces in Isotropic Linear Thermo-Elasticity With Initial Stress
,” J. Acoust. Soc. Am.
,
106
(3
), pp. 1586
–1588
.10.1121/1.42715413.
Othman
,
M. I. A.
, and
Song
,
Y.
, 2007
, “
Reflection of Plane Waves From an Elastic Solid Half-Space Under Hydrostatic Initial Stress Without Energy Dissipation
,” Int. J. Solids Struct.
,
44
(17
), pp. 5651
–5664
.10.1016/j.ijsolstr.2007.01.02214.
Singh
,
B.
,
Kumar
,
A.
, and
Singh
,
J.
, 2006
, “
Reflection of Generalised Thermoelastic Waves From a Solid Half-Space Under Hydrostatic Initial Stress
,” Appl. Math. Comput.
,
177
(1
), pp. 170
–177
.10.1016/j.amc.2005.10.04515.
Singh
,
B.
, 2008
, “
Effect of Hydrostatic Initial Stress on Waves in a Thermoelastic Solid Half-Space
,” Appl. Math. Comput.
,
198
(2
), pp. 494
–505
.10.1016/j.amc.2007.08.07216.
Singh
,
B.
, 2010
, “
Wave Propagation in an Initially Stressed Transversely Isotropic Thermoelastic Solid Half Space
,” Appl. Math. Comput.
,
217
(2
), pp. 705
–715
.10.1016/j.amc.2010.06.00817.
Abo-Dahab
,
S. M.
, 2011
, “
Reflection of P and SV Waves From a Stress-Free Surface Thermoelastic Half-Space Under the Influence of a Magnetic Field and Hydrostatic Initial Stress Without Energy Dissipation
,” J. Vib. Control
,
17
(14
), pp. 2212
–2221
.10.1177/107754631140022818.
Abbas
,
I. A.
, and
Othman
,
M. I.
, 2012
, “
Generalised Thermoelastic Interaction in a Fibre-Reinforced Anisotropic Half Space Under Hydrostatic Initial Stress
,” J. Vib. Control
,
18
(2
), pp. 175
–182
.10.1177/107754631140252919.
Othman
,
M. I.
, and
Atwa
,
S. Y.
, 2012
, “
Thermoelastic Plane Waves for an Elastic Solid Half-Space Under Hydrostatic Initial Stress of Type III
,” Meccanica
,
47
(6
), pp. 1337
–1347
.10.1007/s11012-011-9517-y20.
Chen
,
P. J.
, and
Gurtin
,
M. E.
, 1968
, “
On a Theory of Heat Conduction Involving Two-Temperatures
,” Z. Angew. Math. Phys.
,
19
(4
), pp. 614
–627
.10.1007/BF0159496921.
Chen
,
P. J.
,
Gurtin
,
M. E.
, and
Williams
,
W. O.
, 1968
, “
A Note on Non-Simple Heat Conduction
,” Z. Angew. Math. Phys.
,
19
(6
), pp. 969
–970
.10.1007/BF0160227822.
Chen
,
P. J.
,
Gurtin
,
M. E.
, and
Williams
,
W. O.
, 1969
, “
On the Thermodynamics of Non-Simple Elastic Materials With Two Temperatures
,” Z. Angew. Math. Phys.
,
20
(1
), pp. 107
–112
.10.1007/BF0159112023.
Warren
,
W. E.
, and
Chen
,
P. J.
, 1973
, “
Wave Propagation in the Two-Temperatures Theory of Thermo-Elasticity
,” Acta Mech.
,
16
, pp. 21–33.10.1007/BF0117712324.
Boley
,
B. A.
, and
Tolins
,
I. S.
, 1962
, “
Transient Coupled Thermo-Plastic Boundary Value Problems in the Half Space
,” ASME J. Appl. Mech.
,
29
(4
), pp. 637
–646
.10.1115/1.364064725.
Kumari
,
S.
,
Bharti
., and
Singh
,
B.
, 2019
, “
Effects of Two-Temperature on Rayleigh Wave in Generalized Magneto-Thermoelastic Media With Hydrostatic Initial Stress
,” ASME J. Heat Transfer
,
141
(7
), p. 072002
.10.1115/1.404367726.
Youssef
,
H. M.
, 2006
, “
Theory of Two-Temperature Generalised Thermo-Elasticity
,” IMA J. App. Math.
,
71
(3
), pp. 383
–390
.10.1093/imamat/hxh10127.
Youssef
,
H. M.
, 2011
, “
Theory of Two-Temperature Thermo-Elasticity Without Energy Dissipation
,” J. Therm. Stresses
,
34
(2
), pp. 138
–146
.10.1080/01495739.2010.51194128.
Puri
,
P.
, and
Jordan
,
P. M.
, 2006
, “
On the Propagation of Harmonic Plane Waves Under the Two-Temperature Theory
,” Int. J. Eng. Sci.
,
44
(17
), pp. 1113
–1126
.10.1016/j.ijengsci.2006.07.00229.
Chandrasekharaiah
,
D. S.
, and
Srikantaiah
,
K. R.
, 1984
, “
On Temperature Rate Dependent Thermoelastic Rayleigh Waves in Half Space
,” Gerlands Beitr. Geophys.
,
98
, pp. 133
–141
.30.
Youssef
,
H. M.
, and
Elsibai
,
K. A.
, 2015
, “
On the Theory of Two-Temperature Thermo-Elasticity Without Energy Dissipation of Green-Naghdi Model
,” Appl. Anal.
,
94
(10
), pp. 1997
–2012
.10.1080/00036811.2014.96192031.
Baksi
,
A.
,
Roy
,
B. K.
, and
Bera
,
R. K.
, 2006
, “
Eigenvalue Approach to Study the Effect of Rotation and Relaxation Time in Generalized Magneto-Thermo Viscoelastic Medium in One Dimension
,” Math. Comput. Model.
,
44
, pp. 1069
–1079
.10.1016/j.mcm.2006.03.01032.
Kumar
,
R.
,
Sharma
,
N.
, and
Lata
,
P.
, 2016
, “
Thermo-Mechanical Interactions in Transversely Isotropic Magneto-Thermoelastic Medium With Vacuum and With and Without Energy Dissipation With Combined Effects of Rotation, Vacuum and Two Temperatures
,” Appl. Math. Model.
,
40
(13–14
), pp. 6560
–6575
.10.1016/j.apm.2016.01.06133.
Agarwal
,
V. K.
, 1979
, “
On Plane Waves in Generalized Thermoelasticity
,” Acta Mech.
,
31
(3–4
), pp. 185
–198
.10.1007/BF0117684734.
Agarwal
,
V. K.
, 1979
, “
On Electro Magneto-Thermoelastic Plane Waves
,” Acta Mech.
,
34
, pp. 181
–191
.10.1007/BF0122798335.
Schoenberg
,
M.
, and
Censor
,
D.
, 1973
, “
Elastic Waves in Rotating Media
,” Q. Appl. Math.
,
31
, pp. 115
–125
.10.1090/qam/9970836.
Puri
,
P.
, 1976
, “
Plane Thermoelastic Waves in Rotating Media
,” Bull Acad. Pol. Sci. Tech.
,
24
, pp. 103
–110
.37.
Choudhuri
,
S. K. R.
, and
Debnath
,
L.
, 1983
, “
Magneto-Thermoelastic Plane Waves in a Rotating Media
,” Int. J. Eng. Sci.
,
21
, pp. 155
–163
.10.1016/0020-7225(83)90007-138.
Choudhuri
,
S. K. R.
, and
Debnath
,
L.
, 1983
, “
Magneto-Elastic Plane Waves in Infinite Rotating Media
,” ASME J. Appl. Mech.
,
50
(2
), pp. 283
–287
.10.1115/1.316703339.
Singh
,
B.
,
Kumari
,
S.
, and
Singh
,
J.
, 2012
, “
Rayleigh Wave in a Rotating in a Magneto-Thermo-Elastic Half-Plane
,” J. Theor. Appl. Mech.
,
42
(4
), pp. 75
–92
.10.2478/v10254-012-0021-040.
Singh
,
B.
, 2013
, “
Propagation of Rayleigh Wave in a Two-Temperature Generalized Thermoelastic Solid Half-Space
,” ISRN Geophys.
, pp. 857
–937
.10.1155/2013/85793741.
Singh
,
B.
, and
Bala
,
K.
, 2013
, “
On Rayleigh Wave in Two-Temperature Generalized Thermoelastic Medium Without Energy Dissipation
,” Appl. Math.
,
4
(1
), pp. 107
–112
.10.4236/am.2013.41019Copyright © 2020 by ASME
You do not currently have access to this content.