Abstract

A new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.

References

1.
Mayle
,
R. E.
,
2018
,
Elements of Transitional Boundary-Layer Flow
, 2nd ed.,
Logos Verlag GmbH
,
Berlin, Germany
.
2.
Mayle
,
R.
, and
Schulz
,
A.
,
1997
, “
The Path to Predicting Bypass Transition
,”
ASME J. Turbomach.
,
119
(
3
), pp.
405
411
.10.1115/1.2841138
3.
Mayle
,
R. E.
,
Dullenkopf
,
K.
, and
Schulz
,
A.
,
1998
, “
The Turbulence That Matters
,”
ASME J. Turbomach.
,
120
(
3
), pp.
402
409
.10.1115/1.2841731
4.
Mayle
,
R. E.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2008
, “
Reynolds Stress Calculations for Pre-Transitional Boundary Layers With Turbulent Free Streams
,”
ASME
Paper No. GT2008-50109.10.1115/GT2008-50109
5.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2004
, “
A New Model for Boundary Layer Transition Using a Single-Point RANS Approach
,”
ASME J. Turbomach.
,
126
(
1
), pp.
193
202
.10.1115/1.1622709
6.
Turner
,
C. R.
,
2012
, “
Laminar Kinetic Energy Modelling for Improved Laminar-Turbulent Transition Prediction
,” Ph.D. thesis, University of Manchester, Manchester, UK.
7.
Fürst
,
J.
,
2013
, “
Numerical Simulation of Transitional Flows With Laminar Kinetic Energy
,”
Eng. Mech.
,
20
(
5
), pp.
379
388.
http://www.engineeringmechanics.cz/pdf/20_5_379.pdf
8.
Roach
,
P. E.
, and
Brierley
,
D. H.
,
1992
, “
The Influence of a Turbulent Free-Stream on Zero Pressure Gradient Transitional Boundary Layer Development— Part I: Test Cases T3A and T3B
,” Numerical Simulation of Unsteady Flows and Transition to Turbulence, O. Perinea, O. Pironneau, W. Rodi, I. L. Ryhming, A. M. Savill, and T. V. Truong, eds., Cambridge University Press, Cambridge, UK, pp.
319
347
.
9.
Westin
,
K.
,
Boiko
,
A.
,
Klingmann
,
B.
,
Kozlov
,
V.
, and
Alfredsson
,
P.
,
1994
, “
Experiments in a Boundary Layer Subjected to Free-Stream Turbulence—Part 1. Boundary Layer Structure and Receptivity
,”
J. Fluid Mech.
,
281
, pp.
193
218
.10.1017/S0022112094003083
10.
Jacobs
,
R.
, and
Durbin
,
P.
,
2001
, “
Simulation of Bypass Transition
,”
J. Fluid Mech.
,
428
, pp.
185
212
.10.1017/S0022112000002469
11.
Zaki
,
T.
, and
Durbin
,
P.
,
2005
, “
Mode Interaction and the Bypass Route to Transition
,”
J. Fluid Mech.
,
531
, pp.
85
111
.10.1017/S0022112005003800
12.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
537
.10.1115/1.2929110
13.
Jonáš
,
P.
,
Mazur
,
O.
, and
Uruba
,
V.
,
2000
, “
On the Receptivity of the by-Pass Transition to the Length Scale of the Outer Stream Turbulence
,”
Eur. J. Mech.-B/Fluids
,
19
(
5
), pp.
707
722
.10.1016/S0997-7546(00)01094-3
14.
Fransson
,
J. H. M.
,
Matsubara
,
M.
, and
Alfredsson
,
P. H.
,
2005
, “
Transition Induced by Free-Stream Turbulence
,”
J. Fluid Mech.
,
527
(
4
), pp.
1
25
.10.1017/S0022112004002770
15.
Shahinfar
,
S.
, and
Fransson
,
J. H.
,
2011
, “
Effect of Free-Stream Turbulence Characteristics on Boundary Layer Transition
,”
J. Phys.: Conf. Ser.
,
318
(
3
), p.
10
.10.1088/1742-6596/318/3/032019
16.
Ubaldi
,
M.
,
Zunino
,
P.
,
Campora
,
U.
, and
Ghiglione
,
A.
,
1996
, “
Detailed Velocity and Turbulence Measurements of the Profile Boundary Layer in a Large Scale Turbine Cascade
,”
ASME
Paper No. 96-GT-42.10.1115/96-GT-042
17.
Simon
,
T. W.
,
Qiu
,
S.
, and
Yuan
,
K.
,
2000
, “
Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions
,” NASA Glenn Research Center, Minneapolis, MN, Report No. CR-2000-209957.
18.
Simoni
,
D.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2009
, “
Hot-Film and LDV Investigation of the Boundary Layer Transition on a Turbine Profile at Different Reynolds Numbers
,”
WSEAS Trans. Fluid Mech.
,
4
(
2
), pp.
35
44
.
19.
Gomes
,
R. A.
,
Stotz
,
S.
,
Blaim
,
F.
, and
Niehuis
,
R.
,
2015
, “
Hot-Film Measurements on a Low Pressure Turbine Linear Cascade With Bypass Transition
,”
ASME J. Turbomach.
,
137
(
9
), p.
091007
.10.1115/1.4029967
20.
Gramespacher
,
C.
,
Albiez
,
H.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2019
, “
The Generation of Grid Turbulence With Continuously Adjustable Intensity and Length Scales
,”
Exp. Fluids
,
60
(
5
), p.
85
.10.1007/s00348-019-2727-0
21.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
.10.1115/1.1811101
22.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2007
, “
Surface Roughness and Secondary Flow Effects on External Heat Transfer of a HP Turbine Vane
,”
AIAA J. Propul. Power
,
23
(
2
), pp.
283
291
.10.2514/1.23062
23.
Stripf
,
M.
,
2007
, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,” Ph.D. thesis, University of Karlsruhe, Karlsruhe, Germany.
24.
Kahalerras
,
H.
,
Malécot
,
Y.
,
Gagne
,
Y.
, and
Castaing
,
B.
,
1998
, “
Intermittency and Reynolds Number
,”
Phys. Fluids
,
10
(
4
), pp.
910
921
.10.1063/1.869613
25.
Hultmarc
,
M.
, and
Smits
,
A. J.
,
2010
, “
Temperature Corrections for Constant Temperature and Constant Current Hot-Wire Anemometers
,”
Meas. Sci. Technol.
,
21
(
10
), p.
4
.10.1088/0957-0233/21/10/105404
26.
Bruun
,
H. H.
,
Nabhani
,
N.
,
Fardad
,
A. A.
, and
Al-Kayiem
,
H. H.
,
1990
, “
Velocity Component Measurements by X Hot-Wire Anemometry
,”
Meas. Sci. Technol.
,
1
(
12
), pp.
1314
1321
.10.1088/0957-0233/1/12/010
27.
Canepa
,
E.
,
Ubaldi
,
M.
, and
Zunino
,
P.
,
2002
, “
Experiences in the Application of Intermittency Detection Techniques to Hot-Film Signals in Transitional Boundary Layers
,”
The 16th Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
, Cambridge, UK, Sept. 23–24, pp.
2077
2085
.
28.
Hodson
,
H.
,
Huntsman
,
I.
, and
Steele
,
A.
,
1993
, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME
Paper No. 93-GT-310.10.1115/93-GT-310
29.
Solomon
,
W. J.
,
1996
, “
Unsteady Boundary Layer Transition on Axial Compressor Blades
,” Ph.D. thesis, University of Tasmania, Hobart, Australia.
30.
Falco
,
R.
, and
Gendrich
,
C.
,
1990
, “
The Turbulence Burst Detection Algorithm of Z. Zaric
,” Near-Wall Turbulence, Hemisphere, New York, pp.
911
931
.
31.
Schneider
,
S.
,
1995
, “
Improved Methods for Measuring Laminar-Turbulent Intermittency in Boundary Layers
,”
Exp. Fluids
,
18
(
5
), pp.
370
375
.10.1007/BF00211394
32.
Xiong
,
Z.
, and
Lele
,
S. K.
,
2003
, “
Simulation and Analysis of Stagnation Point Heat Transfer Under Free-Stream Turbulence
,”
AIAA
Paper No. AIAA-2003-1259.10.2514/6.AIAA-2003-1259
33.
Brown
,
M. L.
,
Parsheh
,
M.
, and
Aidun
,
C. K.
,
2006
, “
Turbulent Flow in a Converging Channel: Effect of Contraction and Return to Isotropy
,”
J. Fluid Mech.
,
560
, pp.
437
448
.10.1017/S0022112006000449
34.
Xiong
,
Z.
, and
Lele
,
S. K.
,
2007
, “
Stagnation-Point Flow Under Free-Stream Turbulence
,”
J. Fluid Mech.
,
590
, pp.
1
33
.10.1017/S0022112007007768
35.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
,
1995
, “
An Account of Free-Stream-Turbulence Length Scale on Laminar Heat Transfer in Gas Turbines
,”
ASME J. Turbomach.
,
117
(
3
), pp.
401
406
.10.1115/1.2835675
36.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
,
1996
, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
,
118
(
4
), pp.
737
743
.10.1115/1.2840929
37.
Johnson
,
M. W.
,
1999
, “
Prediction of Turbulent Spot Growth Rates
,”
ASME
Paper No. 99-GT-31.10.1115/99-GT-31
38.
D'Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
,
2001
, “
Turbulent Spots in Strong Adverse Pressure Gradients—Part 1: Spot Behavior
,”
ASME
Paper No. 2001-GT-0194.10.1115/2001-GT-0194
39.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1970
,
Heat and Mass Transfer in Boundary Layers
, 2nd ed.,
International Textbook Company
,
London, UK
.
40.
Solomon
,
W. J.
,
Walker
,
G. J.
, and
Gostelow
,
J. P.
,
1996
, “
Transition Length Prediction for Flows With Rapidly Changing Pressure Gradients
,”
ASME J. Turbomach.
,
118
(
4
), pp.
744
751
.10.1115/1.2840930
41.
Mayle
,
R. E.
,
1999
, “
A Theory for Predicting the Turbulent-Spot Production Rate
,”
ASME J. Turbomach.
,
121
(
3
), pp.
588
593
.10.1115/1.2841356
You do not currently have access to this content.