Abstract

In an oscillation heat pipe (OHP), when two-phase flow oscillates to the condensation region, saturated vapor bubbles/slugs are subjected to a sudden temperature reduction or immediate subcooling. Rapid condensation ruptures vapor bubbles and generates cavitation erosions on the tube interior surface. In this article, a thorough study is performed to understand discrepancy of variation tendency between acoustic radiation and OHP temperature difference that both are operating temperature-dependent. On this basis, three temperature zones were identified: (1) low operating temperature zone with strong cavitation collapse and acoustic radiations, (2) optimal temperature zone with the minimum temperature difference and weakening cavitation collapses, and, (3) high-temperature zone where dryout and oscillation failures develop. At the optimal operating temperature, high-frequent oscillations reduce subcooling of two-phase flow, alleviating the impact of cavitation collapses and ceasing acoustic radiations. At high operating temperature, liquid surface tension dramatically reduces and dynamic contact angle significantly increases. Both the factors tend to lower the critical diameter necessary to maintain pressure difference and oscillating two-phase slug flow. When the critical diameter reduces to be less than the OHP tube diameter, liquid slugs are not able to seal the OHP capillary tubes, leading to dryout or insufficient heat and mass transfer.

References

References
1.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2005
,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
Hoboken, NJ
.
2.
Brennen
,
C. E.
,
2005
,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
Cambridge, UK
, Chap.
5
.
3.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
4.
Benjamin
,
T. B.
, and
Ellis
,
A. T.
,
1966
, “
The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries
,”
Math. Phys. Sci.
,
260
(
1
), pp.
221
240
.https://www.jstor.org/stable/73553
5.
Lauer
,
E.
,
Hu
,
X. Y.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2012
, “
Numerical Modelling and Investigation of Symmetric and Asymmetric Cavitation Bubble Dynamics
,”
Comput. Fluids
,
69
, pp.
1
19
.10.1016/j.compfluid.2012.07.020
6.
Flannigan
,
D. J.
, and
Suslick
,
K. S.
,
2005
, “
Plasma Formation and Temperature Measurement During Single-Bubble Cavitation
,”
Nature
,
434
(
7029
), pp.
52
55
.10.1038/nature03361
7.
Flint
,
E. B.
, and
Suslick
,
K. S.
,
1991
, “
The Temperature of Cavitation
,”
Science
,
253
(
5026
), pp.
1397
1399
.10.1126/science.253.5026.1397
8.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer
,
134
(
12
), p.
123001
.10.1115/1.4007407
9.
Cai
,
S. Q.
,
2019
, “
Cavitation Occurring in Capillary Tubes
,”
Phys. Lett. A
,
383
(
6
), pp.
509
513
.10.1016/j.physleta.2018.11.026
10.
Lauterborn
,
W.
, and
Ohl
,
C. D.
,
1997
, “
Cavitation Bubble Dynamics
,”
Ultrason. Sonochem.
,
4
(
2
), pp.
65
75
.10.1016/S1350-4177(97)00009-6
11.
Philipp
,
A.
, and
Lauterborn
,
W.
,
1998
, “
Cavitation Erosion by Single Laser-Produced Bubbles
,”
J. Fluid Mech.
,
361
, pp.
75
116
.10.1017/S0022112098008738
12.
Vogel
,
A.
,
Lauterborn
,
W.
, and
Timm
,
R.
,
1989
, “
Optical and Acoustic Investigations of the Dynamics of Laser-Produced Cavitation Bubbles Near a Solid Boundary
,”
J. Fluid Mech.
,
206
, pp.
299
338
.10.1017/S0022112089002314
13.
Zhang
,
Y. W.
, and
Faghri
,
A.
,
2002
, “
Heat Transfer in a Pulsating Heat Pipe With Open End
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
755
764
.10.1016/S0017-9310(01)00203-4
14.
Cai
,
Q.
,
Chen
,
C. L.
, and
Asfia
,
J.
,
2006
, “
Operating Characteristic Investigations in Pulsating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
12
), pp.
1329
1334
.10.1115/1.2349509
15.
Silbey
,
R. J.
,
Alberty
,
R. A.
, and
Bawendi
,
M. G.
,
2004
,
Physical Chemistry
, 4th ed.,
Wiley
,
Hoboken, NJ
.
16.
Faghri
,
A.
, and
Zhang
,
Y.
,
2006
,
Transport Phenomena in Multiphase Systems
,
Elsevier
,
Burlington, MA
.
17.
Kandlikar
,
S. G.
, and
Steinke
,
M. E.
,
2002
, “
Contact Angles and Interface Behavior During Rapid Evaporation of Liquid on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3771
3780
.10.1016/S0017-9310(02)00090-X
You do not currently have access to this content.