Abstract

Condensation heat transfer coefficients (HTCs) are rather low compared to thin film evaporation. Therefore, it can be a limiting factor for designing heat transfer equipment. In this work, heat transfer characteristics of water vapor condensation phenomena were experimentally studied on a vertically aligned smooth copper substrate for a range of pressures and temperatures for two different liquid wettability conditions. The heat transfer performance is dominated by the phase change process at the solid–vapor interface along with the liquid formation mechanism. Compared to heat transfer results measured at an untreated copper surface, heat transport is augmented with a thin layer of perfluoro-silane coating over the same substrate. In this work, the effect of saturation pressure on the condensation process at both surfaces has been investigated by analyzing heat transfer coefficients. The results obtained experimentally show an increase in contact angle (CA) with the surface coating. A heat transfer augmentation of about 26% over uncoated surfaces was obtained and surfaces did not show any degradation after 40 h of operation. Finally, current results are compared with heat transfer values reported in open literature.

References

1.
Ma
,
X.
,
Chen
,
J.
,
Li
,
S.
,
Sha
,
Q.
,
Liang
,
A.
,
Li
,
W.
,
Zhang
,
J.
,
Zheng
,
G.
, and
Feng
,
Z.
,
2003
, “
Application of Absorption Heat Transformer to Recover Waste Heat From a Synthetic Rubber Plant
,”
Appl. Therm. Eng.
,
23
(
7
), pp.
797
806
.10.1016/S1359-4311(03)00011-5
2.
Milani
,
D.
,
Abbas
,
A.
,
Vassallo
,
A.
,
Chiesa
,
M.
, and
Al Bakri
,
D.
,
2011
, “
Evaluation of Using Thermoelectric Coolers in a Dehumidification System to Generate Freshwater From Ambient Air
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2491
2501
.10.1016/j.ces.2011.02.018
3.
Bonner
,
R. W.
,
2010
, “
Dropwise Condensation in Vapor Chambers
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, Santa Clara, CA, Feb. 21–25, pp.
224
227
.10.1109/STHERM.2010.5444286
4.
Liu
,
Y.
, and
Kulacki
,
F. A.
,
2018
, “
An Experimental Study of Defrost on Treated Surfaces: Effect of Frost Slumping
,”
Int. J. Heat Mass Transfer
,
119
, pp.
880
890
.10.1016/j.ijheatmasstransfer.2017.12.018
5.
Beér
,
J. M.
,
2007
, “
High Efficiency Electric Power Generation: The Environmental Role
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
107
134
.10.1016/j.pecs.2006.08.002
6.
Hu
,
S.
,
Ma
,
X.
, and
Zhou
,
W.
,
2017
, “
Condensation Heat Transfer of Ethanol-Water Vapor in a Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
113
, pp.
1047
1055
.10.1016/j.applthermaleng.2016.11.013
7.
Sarraf
,
K.
,
Launay
,
S.
, and
Tadrist
,
L.
,
2016
, “
Analysis of Enhanced Vapor Desuperheating During Condensation Inside a Plate Heat Exchanger
,”
Int. J. Therm. Sci.
,
105
, pp.
96
108
.10.1016/j.ijthermalsci.2016.03.001
8.
Launay
,
S.
,
Sartre
,
V.
, and
Bonjour
,
J.
,
2007
, “
Parametric Analysis of Loop Heat Pipe Operation: A Literature Review
,”
Int. J. Therm. Sci.
,
46
(
7
), pp.
621
636
.10.1016/j.ijthermalsci.2006.11.007
9.
Mu
,
C.
,
Pang
,
J.
,
Lu
,
Q.
, and
Liu
,
T.
,
2008
, “
Effects of Surface Topography of Material on Nucleation Site Density of Dropwise Condensation
,”
Chem. Eng. Sci.
,
63
(
4
), pp.
874
880
.10.1016/j.ces.2007.10.016
10.
Rausch
,
M. H.
,
Fröba
,
A. P.
, and
Leipertz
,
A.
,
2008
, “
Dropwise Condensation Heat Transfer on Ion Implanted Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1061
1070
.10.1016/j.ijheatmasstransfer.2006.05.047
11.
Roudgar
,
M.
, and
De Coninck
,
J.
,
2015
, “
Condensation Heat Transfer Coefficient Versus Wettability
,”
Appl. Surf. Sci.
,
338
, pp.
15
21
.10.1016/j.apsusc.2015.02.087
12.
Chatterjee
,
A.
,
Derby
,
M. M.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2013
, “
Condensation Heat Transfer on Patterned Surfaces
,”
Int. J. Heat Mass Transfer
,
66
, pp.
889
897
.10.1016/j.ijheatmasstransfer.2013.07.077
13.
Schmidt
,
E.
,
Schurig
,
W.
, and
Sellschopp
,
W.
,
1930
, “
Versuche Über Die Kondensation Von Wasserdampf in Film- Und Tropfenform
,”
Tech. Mech. Thermodyn.
,
1
, pp.
53
63
.10.1007/BF02641051
14.
Umur
,
A.
, and
Griffith
,
P.
,
1965
, “
Mechanism of Dropwise Condensation
,”
ASME J. Heat Transfer
,
87
(
2
), pp.
275
282
.10.1115/1.3689090
15.
Vemuri
,
S.
, and
Kim
,
K. J.
,
2006
, “
An Experimental and Theoretical Study on the Concept of Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
649
657
.10.1016/j.ijheatmasstransfer.2005.08.016
16.
Wilkins
,
D. G.
,
Bromley
,
L. A.
, and
Read
,
S. M.
,
1973
, “
Dropwise and Filmwise Condensation of Water Vapor on Gold
,”
AIChE J.
,
19
(
1
), pp.
119
123
.10.1002/aic.690190117
17.
Sofrata
,
H.
,
1981
, “
Improved Theoretical Model for Wavy Filmwise Condensation
,”
Wärme- Stoffübertragung
,
15
(
2
), pp.
117
124
.10.1007/BF01002407
18.
Rose
,
J. W.
,
1988
, “
Some Aspects of Condensation Heat Transfer Theory
,”
Int. Commun. Heat Mass Transfer
,
15
(
4
), pp.
449
473
.10.1016/0735-1933(88)90043-7
19.
Orkan Uçar
,
I.
, and
Erbil
,
H. Y.
,
2013
, “
Droplet Condensation on Polymer Surfaces: A Review
,”
Turk. J. Chem.
,
37
, pp.
643
674
.10.3906/kim-1303-26
20.
Le Fevre
,
E. J.
, and
Rose
,
J. W.
,
1965
, “
An Experimental Study of Heat Transfer by Dropwise Condensation
,”
Int. J. Heat Mass Transfer
,
8
(
8
), pp.
1117
1133
.10.1016/0017-9310(65)90139-0
21.
Weisensee
,
P. B.
,
Wang
,
Y.
,
Qian
,
H.
,
Schultz
,
D.
,
King
,
W. P.
, and
Miljkovic
,
N.
,
2017
, “
Condensate Droplet Size Distribution on Lubricant-Infused Surfaces
,”
Int. J. Heat Mass Transfer
,
109
, pp.
187
199
.10.1016/j.ijheatmasstransfer.2017.01.119
22.
Miljkovic
,
N.
,
Enright
,
R.
,
Nam
,
Y.
,
Lopez
,
K.
,
Dou
,
N.
,
Sack
,
J.
, and
Wang
,
E. N.
,
2013
, “
Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces
,”
Nano Lett.
,
13
(
1
), pp.
179
187
.10.1021/nl303835d
23.
McCormick
,
J. L.
, and
Baer
,
E.
,
1963
, “
On the Mechanism of Heat Transfer in Dropwise Condensation
,”
J. Colloid Sci.
,
18
(
3
), pp.
208
216
.10.1016/0095-8522(63)90012-6
24.
Sikarwar
,
B. S.
,
Khandekar
,
S.
,
Agrawal
,
S.
,
Kumar
,
S.
, and
Muralidhar
,
K.
,
2212
, “
Dropwise Condensation Studies on Multiple Scales
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
301
341
.10.1080/01457632.2212.611463
25.
Paxson
,
A. T.
,
Yagüe
,
J. L.
,
Gleason
,
K. K.
, and
Varanasi
,
K. K.
,
2014
, “
Stable Dropwise Condensation for Enhancing Heat Transfer Via the Initiated Chemical Vapor Deposition (iCVD) of Grafted Polymer Films
,”
Adv. Mater.
,
26
(
3
), pp.
418
423
.10.1002/adma.201303065
26.
Chavan
,
S.
,
Cha
,
H.
,
Orejon
,
D.
,
Nawaz
,
K.
,
Singla
,
N.
,
Yeung
,
Y. F.
,
Park
,
D.
,
Kang
,
D. H.
,
Chang
,
Y.
,
Takata
,
Y.
, and
Miljkovic
,
N.
,
2016
, “
Heat Transfer Through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces
,”
Langmuir
,
32
(
31
), pp.
7774
7787
.10.1021/acs.langmuir.6b01903
27.
Leach
,
R. N.
,
Stevens
,
F.
,
Langford
,
S. C.
, and
Dickinson
,
J. T.
,
2006
, “
Dropwise Condensation: Experiments and Simulations of Nucleation and Growth of Water Drops in a Cooling System
,”
Langmuir
,
22
(
21
), pp.
8864
8872
.10.1021/la061901+
28.
Rose
,
J. W.
, and
Glicksman
,
L. R.
,
1973
, “
Dropwise condensation-The Distribution of Drop Sizes
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
411
425
.10.1016/0017-9310(73)90068-9
29.
Andrieu
,
C.
,
Beysens
,
D. A.
,
Nikolayev
,
V. S.
, and
Pomeau
,
Y.
,
2002
, “
Coalescence of Sessile Drops
,”
J. Fluid Mech.
,
453
, pp.
427
438
.10.1017/S0022112001007121
30.
Baojin
,
Q.
,
Li
,
Z.
,
Hong
,
X.
, and
Yan
,
S.
,
2011
, “
Experimental Study on Condensation Heat Transfer of Steam on Vertical Titanium Plates With Different Surface Energies
,”
Exp. Therm. Fluid Sci.
,
35
(
1
), pp.
211
218
.10.1016/j.expthermflusci.2010.09.003
31.
Blackman
,
L. C. F.
,
Dewar
,
M. J. S.
, and
Hampson
,
H.
,
2007
, “
An Investigation of Compounds Promoting the Dropwise Condensation of Steam
,”
J. Appl. Chem.
,
7
(
4
), pp.
160
171
.10.1002/jctb.5010070403
32.
Das
,
A. K.
,
Kilty
,
H. P.
,
Marto
,
P. J.
,
Andeen
,
G. B.
, and
Kumar
,
A.
,
2000
, “
The Use of an Organic Self-Assembled Monolayer Coating to Promote Dropwise Condensation of Steam on Horizontal Tubes
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
278
286
.10.1115/1.521465
33.
Watson
,
R. C. H.
,
Birt
,
D. C. P.
,
Honour
,
C. W.
, and
Ash
,
B. W.
,
2007
, “
The Promotion of Dropwise Condensation by Montan Wax—I: Heat Transfer Measurements
,”
J. Appl. Chem.
,
12
(
12
), pp.
539
546
.10.1002/jctb.5010121204
34.
Marto
,
P. J.
,
Looney
,
D. J.
,
Rose
,
J. W.
, and
Wanniarachchi
,
A. S.
,
1986
, “
Evaluation of Organic Coatings for the Promotion of Dropwise Condensation of Steam
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1109
1117
.10.1016/0017-9310(86)90142-0
35.
Mori
,
K.
,
Fujita
,
N.
,
Horie
,
H.
,
Mori
,
S.
,
Miyashita
,
T.
, and
Matsuda
,
M.
,
1991
, “
Heat Transfer Promotion of an Aluminum-Brass Cooling Tube by Surface Treatment With Triazinethiols
,”
Langmuir
,
7
(
6
), pp.
1161
1166
.10.1021/la00054a024
36.
Acatay
,
K.
,
Simsek
,
E.
,
Ow-Yang
,
C.
, and
Menceloglu
,
Y. Z.
,
2004
, “
Tunable, Superhydrophobically Stable Polymeric Surfaces by Electrospinning
,”
Angew. Chem. Int. Ed.
,
43
(
39
), pp.
5210
5213
.10.1002/anie.200461092
37.
Koch
,
C.
,
Kraft
,
K.
, and
Leipertz
,
A.
,
1998
, “
Parameter Study on the Performance of Dropwise Condensation
,”
Int. J. Therm. Sci.
,
37
, pp.
539
548
.10.1016/S0035-3159(98)80032-9
38.
Koch
,
G.
,
Zhang
,
D. C.
, and
Leipertz
,
A.
,
1997
, “
Condensation of Steam on the Surface of Hard Coated Copper Discs
,”
Heat Mass Transfer
,
32
(
3
), pp.
149
156
.10.1007/s002310050105
39.
Worthington
,
A. M.
,
1876
, “
A Second Paper on the Forms Assumed by Drops of Liquids Falling Vertically on a Horizontal Plate
,”
Proc. R. Soc. London
,
25
(171–178), pp.
261
272
.
40.
Grissom
,
W. M.
, and
Wierum
,
F. A.
,
1981
, “
Liquid Spray Cooling of a Heated Surface
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
261
271
.10.1016/0017-9310(81)90034-X
41.
Ghodbane
,
M.
, and
Holman
,
J. P.
,
1991
, “
Experimental Study of Spray Cooling With Freon-113
,”
Int. J. Heat Mass Transfer
,
34
(
4–5
), pp.
1163
1174
.10.1016/0017-9310(91)90025-A
42.
Furuta
,
T.
,
Nakajima
,
A.
,
Sakai
,
M.
,
Isobe
,
T.
,
Kameshima
,
Y.
, and
Okada
,
K.
,
2009
, “
Evaporation and Sliding of Water Droplets on Fluoroalkylsilane Coatings With Nanoscale Roughness
,”
Langmuir
,
25
(
10
), pp.
5417
5420
.10.1021/la8040665
43.
Furuta
,
T.
,
Sakai
,
M.
,
Isobe
,
T.
,
Matsushita
,
S.
, and
Nakajima
,
A.
,
2011
, “
Sliding of Water Droplets on Hydrophobic Surfaces With Various Hydrophilic Region Sizes
,”
Langmuir
,
27
(
11
), pp.
7307
7313
.10.1021/la200396v
44.
Hong
,
B. S.
,
Han
,
J. H.
,
Kim
,
S. T.
,
Cho
,
Y. J.
,
Park
,
M. S.
,
Dolukhanyan
,
T.
, and
Sung
,
C.
,
1999
, “
Endurable Water-Repellent Glass for Automobiles
,”
Thin Solid Films
,
351
(
1–2
), pp.
274
278
.10.1016/S0040-6090(98)01794-5
45.
Kobayashi
,
H.
, and
Owen
,
M. J.
,
1990
, “
Surface Tension of Poly[(3,3,4,4,5,5,6,6,6-Nonafluorohexyl)Methylsiloxane]
,”
Macromolecules
,
23
(
23
), pp.
4929
4933
.10.1021/ma00225a008
46.
Wen
,
R.
,
Lan
,
Z.
,
Peng
,
B.
,
Xu
,
W.
, and
Ma
,
X.
,
2015
, “
Droplet Dynamics and Heat Transfer for Dropwise Condensation at Lower and Ultra-Lower Pressure
,”
Appl. Therm. Eng.
,
88
, pp.
265
273
.10.1016/j.applthermaleng.2014.09.069
47.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
48.
Jeong
,
H. J.
,
Kim
,
D. K.
,
Lee
,
S. B.
,
Kwon
,
S. H.
, and
Kadono
,
K.
,
2001
, “
Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane
,”
J. Colloid Interface Sci.
,
235
(
1
), pp.
130
134
.10.1006/jcis.2000.7313
49.
Mahltig
,
B.
, and
Böttcher
,
H.
,
2003
, “
Modified Silica Sol Coatings for Water-Repellent Textiles
,”
J. Sol-Gel Sci. Technol.
,
27
(
1
), pp.
43
52
.10.1023/A:1022627926243
50.
Gu
,
G.
,
Zhang
,
Z.
, and
Dang
,
H.
,
2004
, “
Hydrophobic Inorganic-Organic Thin Films With a Low Coefficient of Friction
,”
Mater. Res. Bull
,
39
(
7–8
), pp.
1037
1044
.10.1016/j.materresbull.2004.03.007
51.
Badri
,
K. H.
,
Wong
,
C. S.
,
Shahrom
,
M. S. R.
,
Hao
,
C. L.
,
Baderuliksan
,
N. Y.
, and
Norzali
,
N. R. A.
,
2010
, “
FTIR Spectroscopy Analysis of the Prepolymerization of Palm-Based Polyurethane
,”
Solid State Sci. Technol.
,
18
(2), pp.
1
8
.https://pdfs.semanticscholar.org/055b/9973081f259244693762d74947f6be312d36.pdf?_ga=2.168306017.1364851737.1582007968-1528745098.1582007968
52.
Bernardin
,
J. D.
,
Mudawar
,
I.
,
Walsh
,
C. B.
, and
Franses
,
E. I.
,
1997
, “
Contact Angle Temperature Dependence for Water Droplets on Practical Aluminum Surfaces
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1017
1033
.10.1016/0017-9310(96)00184-6
53.
Nusselt
,
W.
,
1916
, “
Die Oberflächenkondensation des Wasserdampfes
,” Zeitschrift des Vereins Deutscher Ingenieure, 60, pp. 541–546.
54.
Huang
,
D.-J.
, and
Leu
,
T.-S.
,
2015
, “
Condensation Heat Transfer Enhancement by Surface Modification on A monolithic Copper Heat Sink
,”
Appl. Thermal Eng.
,
75
, pp.
908
917
.10.1016/j.applthermaleng.2014.10.019
55.
Ma
,
X.-H.
,
Zhou
,
X.-D.
,
Lan
,
Z.
,
Song
,
T.-Y.
, and
Ji
,
J.
,
2007
, “
Experimental Investigation of Enhancement of Dropwise Condensation Heat Transfer of Steam-Air Mixture: Falling Droplet Effect
,”
J. Enhanced Heat Trans.
,
14
(
4
), pp.
295
305
10.1615/JEnhHeatTransf.v14.i4.30
56.
Ma
,
X.-H.
,
Zhou
,
X.-D.
,
Lan
,
Z.
,
Li
,
Y.-M.
, and
Zhang
,
Y.
,
2008
, “
Condensation Heat Transfer Enhancement in the Presence of Non-Condensable Gas Using the Interfacial Effect of Dropwise Condensation
,”
Int. J. Heat Mass Trans.
,
51
(
7–8
), pp.
1728
1737
.10.1016/j.ijheatmasstransfer.2007.07.021
57.
Minkowycz
,
W. J.
, and
Sparrow
,
E. M.
,
1966
, “
Condensation Heat Transfer in the Presence of Noncondensables, Interfacial Resistance, Superheating, Variable Properties, and Diffusion
,”
Int. J. Heat Mass Transfer
,
9
(
10
), pp.
1125
1144
.10.1016/0017-9310(66)90035-4
You do not currently have access to this content.