Abstract

Direct numerical simulations (DNS) have been performed using open source computational fluid dynamics (CFD) package openfoam to investigate the unsteady flow and heat transfer characteristics of primary and secondary corrugated wavy channels for fixed values of wavelength and amplitude by varying Reynolds number (Re). Computations are carried out by considering only one module of the wavy channel and applying periodic boundary conditions to reduce the time for computations. Numerical method has been validated thoroughly against the numerical and experimental results reported in the literature. Steady as well as unsteady flow characteristics in the primary and secondary corrugated channels have been elaborated and explained with the help of streamlines, velocity contours, isosurfaces of velocity, and Q value. Temperature and Nusselt number contours are presented to illustrate the heat transfer characteristics of wavy channels.

References

1.
Blancher
,
S.
,
Creff
,
R.
, and
Quere
,
P. L.
,
1998
, “
Effect of Tollmien-Schlichting Wave on Convective Heat Transfer in a Wavy Channel—Part I: Linear Analysis
,”
Int. J. Heat Fluid Flow
,
19
(
1
), pp.
39
48
.10.1016/S0142-727X(97)10009-1
2.
Floryan
,
J. M.
,
2003
, “
Vortex Instability in a Diverging-Converging Channel
,”
J. Fluid Mech.
,
482
, pp.
17
50
.10.1017/S0022112003003987
3.
Wang
,
G. V.
, and
Vanka
,
S. P.
,
1995
, “
Convective Heat Transfer in Periodic Wavy Passages
,”
Int. J. Heat Mass Transfer
,
38
(
17
), pp.
3219
3230
.10.1016/0017-9310(95)00051-A
4.
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2018
, “
Effect of Skewness on Flow and Heat Transfer Characteristics of a Wavy Channel
,”
Int. J. Heat Mass Transfer
,
120
, pp.
956
969
.10.1016/j.ijheatmasstransfer.2017.12.120
5.
Sawyers
,
D. R.
,
Sen
,
M.
, and
Chang
,
H. C.
,
1998
, “
Heat Transfer Enhancement in Three-Dimensional Corrugated Channel Flow
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3559
3573
.10.1016/S0017-9310(98)00029-5
6.
Girón-Palomares
,
B.
,
Hernández-Guerrero
,
A.
,
Romero-Méndez
,
R.
, and
Oviedo-Tolentino
,
F.
,
2009
, “
An Experimental Analysis of the Flow Pattern in Heat Exchangers With an Egg Carton Configuration (Parallel, Convergent and Divergent Cases)
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
158
171
.10.1016/j.ijheatfluidflow.2008.09.005
7.
Luan
,
Z. J.
,
Zhang
,
G. M.
,
Tian
,
M. C.
, and
Fan
,
M. X.
,
2008
, “
Flow Resistance and Heat Transfer Characteristics of a New-Type Plate Heat Exchanger
,”
J. Hydrodyn.
,
20
(
4
), pp.
524
529
.10.1016/S1001-6058(08)60089-X
8.
Blomerius
,
H.
,
HöLsken
,
C.
, and
Mitra
,
N. K.
,
1999
, “
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
314
321
.10.1115/1.2825982
9.
Stalio
,
E.
,
Angeli
,
D.
, and
Barozzi
,
G. S.
,
2011
, “
Numerical Simulation of Forced Convection Over a Periodic Series of Rectangular Cavities at Low Prandtl Number
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1014
1023
.10.1016/j.ijheatfluidflow.2011.05.009
10.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Turbulent Heat and Mass Transfer in Sinusoidal Wavy Channels
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1240
1257
.10.1016/j.ijheatfluidflow.2008.04.002
11.
Frohlich
,
J.
,
Mellen
,
C. P.
,
Rodi
,
W.
,
Temmerman
,
L.
, and
Leschziner
,
M. A.
,
2005
, “
Highly Resolved Large-Eddy Simulation of Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
526
, pp.
19
66
.10.1017/S0022112004002812
12.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
(
2
), pp.
180
186
.10.1115/1.3450666
13.
Greiner
,
M.
,
Faulkner
,
R. J.
,
Van
,
V. T.
,
Tufo
,
H. M.
, and
Fischer
,
P. F.
,
2000
, “
Simulations of Three-Dimensional Flow and Augmented Heat Transfer in a Symmetrically Grooved Channel
,”
ASME J. Heat Transfer
,
122
(
4
), pp.
653
660
.10.1115/1.1318207
14.
Stalio
,
E.
, and
Piller
,
M.
,
2007
, “
Direct Numerical Simulation of Heat Transfer in Converging–Diverging Wavy Channels
,”
ASME J. Heat Transfer
,
129
(
7
), pp.
769
777
.10.1115/1.2717235
15.
Wang
,
Z.
,
Shang
,
H.
, and
Zhang
,
J.
,
2017
, “
Lattice Boltzmann Simulations of Heat Transfer in Fully Developed Periodic Incompressible Flows
,”
Phys. Rev. E
,
95
(
6
), p.
063309
.10.1103/PhysRevE.95.063309
16.
Li
,
P.
, and
Zhang
,
J.
,
2018
, “
Simulating Heat Transfer Through Periodic Structures With Different Wall Temperatures: A Temperature Decomposition Method
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112002
.10.1115/1.4040257
17.
Piller
,
M.
,
Polidoro
,
S.
, and
Stalio
,
E.
,
2014
, “
Multiplicity of Solutions for Laminar, Fully-Developed Natural Convection in Inclined, Parallel-Plate Channels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
1014
1026
.10.1016/j.ijheatmasstransfer.2014.08.072
18.
Nishimura
,
T.
,
Ohori
,
Y.
, and
Kawamura
,
Y.
,
1984
, “
Flow Characteristics in a Channel With Symmetric Wavy Wall for Steady Flow
,”
J. Chem. Eng. Jpn.
,
17
(
5
), pp.
466
471
.10.1252/jcej.17.466
19.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
20.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
, Dubrovnik, Croatia, Sept. 19–21, pp.
1
20
. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.9673&rep=rep1&type=pdf
21.
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2020
, “
Simulation of Fully Developed Flow and Heat Transfer in Wavy Channels Using OpenFOAM
,”
Advances in Mechanical Engineering
,
Springer
,
Singapore
.
22.
Wirtz
,
R. A.
,
Huang
,
F.
, and
Greiner
,
M.
,
1999
, “
Correlation of Fully Developed Heat Transfer and Pressure Drop in a Symmetrically Grooved Channel
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
236
239
.10.1115/1.2825957
23.
Guzmán
,
A. M.
, and
Amon
,
C. H.
,
1994
, “
Transition to Chaos in Converging–Diverging Channel Flows: Ruelle–Takens–Newhouse Scenario
,”
Phys. Fluids
,
6
(
6
), pp.
1994
2002
.10.1063/1.868206
24.
Yadav
,
N.
,
Gepner
,
S. W.
, and
Szumbarski
,
J.
,
2017
, “
Instability in a Channel With Grooves Parallel to the Flow
,”
Phys. Fluids
,
29
(
8
), p.
084104
.10.1063/1.4997950
25.
Ramgadia
,
A. G.
, and
Saha
,
A. K.
,
2013
, “
Numerical Study of Fully Developed Flow and Heat Transfer in a Wavy Passage
,”
Int. J. Therm. Sci.
,
67
, pp.
152
166
.10.1016/j.ijthermalsci.2012.12.005
26.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
27.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,” Proceedings of the 1988 CTR Summer Program, NASA Ames/Stanford University, Stanford, CA, pp.
193
208
.
28.
Harikrishnan
,
S.
, and
Tiwari
,
S.
,
2019
, “
Heat Transfer Characteristics of Sinusoidal Wavy Channel With Secondary Corrugations
,”
Int. J. Therm. Sci.
,
145
, p.
105973
.10.1016/j.ijthermalsci.2019.105973
You do not currently have access to this content.