Abstract

Monohydric alcohols have been used as promising phase change materials (PCMs) for low-temperature latent heat storage. However, the heat storage/retrieval rates are limited due to the low thermal conductivity of such alcohols. In this work, nonequilibrium molecular dynamics (NEMD) simulations were performed to study the microscopic heat conduction in example monohydric alcohols, i.e., 1-dodecanol (C12H26O), 1-tetradecanol (C14H30O), and 1-hexadecanol (C16H34O). A simplified ideal crystal model was proposed to exploit the potential for improving the thermal conductivity of monohydric alcohols. The effect of ideal crystalline structures, especially the contribution of the hydroxyl group, on the microscopic heat conduction process was analyzed. The thermal conductivity of the ideal crystals of the various monohydric alcohols was predicted to be more than twice as compared to that of their respective solids. The major thermal resistance in the ideal crystals was found around the molecular interfaces, as a result of the excellent heat conduction performance along the linear molecular chains. The calculated vibrational density of states (VDOS) and interfacial heat transfer were then investigated. When the interfaces are surrounded by hydroxyl groups as walls, strong hydrogen bond (HB) interactions were observed. The interfacial heat transfer coefficient of the ideal crystalline structures of 1-tetradecanol was found to reach up to ∼735.6 MW/m2 W. It was elucidated that the high interfacial heat transfer rate is clearly related to the stronger intermolecular interactions.

References

References
1.
Shao
,
X.-F.
,
Wang
,
C.
,
Yang
,
Y.-J.
,
Feng
,
B.
,
Zhu
,
Z.-Q.
,
Wang
,
W.-J.
,
Zeng
,
Y.
, and
Fan
,
L.-W.
,
2018
, “
Screening of Sugar Alcohols and Their Binary Eutectic Mixtures as Phase Change Materials for Low-to-Medium Temperature Latent Heat Storage—(Ι): Non-Isothermal Melting and Crystallization Behaviors
,”
Energy
,
160
, pp.
1078
1090
.10.1016/j.energy.2018.07.081
2.
Kaizawa
,
A.
,
Maruoka
,
N.
,
Kawai
,
A.
,
Kamano
,
H.
,
Jozuka
,
T.
,
Senda
,
T.
, and
Akiyama
,
T.
,
2008
, “
Thermophysical and Heat Transfer Properties of Phase Change Material Candidate for Waste Heat Transportation System
,”
Heat Mass Transfer
,
44
(
7
), pp.
763
769
.10.1007/s00231-007-0311-2
3.
Fan
,
L.-W.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
4.
Elgafy
,
A.
,
Mesalhy
,
O.
, and
Lafdi
,
K.
,
2004
, “
Numerical and Experimental Investigations of Melting and Solidification Processes of High Melting Point PCM in a Cylindrical Enclosure
,”
ASME J. Heat Transfer
,
126
(
5
), pp.
869
875
.10.1115/1.1800492
5.
Boese
,
R.
,
Weiss
,
H. C.
, and
Bläser
,
D.
,
1999
, “
The Melting Point Alternation in the Short-Chain n-Alkanes: Single-Crystal X-Ray Analyses of Propane at 30 K and of n-Butane to n-Nonane at 90 K
,”
Angew. Chem., Int. Ed.
,
38
(
7
), pp.
988
992
.10.1002/(SICI)1521-3773(19990401)38:7<988::AID-ANIE988>3.0.CO;2-0
6.
Rastorguev
,
Y. L.
,
Bogatov
,
G. F.
, and
Grigor'ev
,
B. A.
,
1974
, “
Thermal Conductivity of Higher n-Alkanes
,”
Chem. Technol. Fuels Oils
,
10
(
9
), pp.
728
732
.10.1007/BF00717208
7.
Hosseinizadeh
,
S. F.
,
Darzi
,
A. R.
, and
Tan
,
F.-L.
,
2012
, “
Numerical Investigations of Unconstrained Melting of Nano-Enhanced Phase Change Material (NEPCM) Inside a Spherical Container
,”
Int. J. Therm. Sci.
,
51
, pp.
77
83
.10.1016/j.ijthermalsci.2011.08.006
8.
Zeng
,
Y.
,
Fan
,
L.-W.
,
Xiao
,
Y.-Q.
,
Yu
,
Z.-T.
, and
Cen
,
K.-F.
,
2013
, “
An Experimental Investigation of Melting of Nanoparticle-Enhanced Phase Change Materials (NePCMs) in a Bottom-Heated Vertical Cylindrical Cavity
,”
Int. J. Heat Mass Transfer
,
66
, pp.
111
117
.10.1016/j.ijheatmasstransfer.2013.07.022
9.
Zhu
,
Z.-Q.
,
Liu
,
M.-J.
,
Hu
,
N.
,
Huang
,
Y.-K.
,
Fan
,
L.-W.
,
Yu
,
Z.-T.
, and
Ge
,
J.
,
2018
, “
Inward Solidification Heat Transfer of Nano-Enhanced Phase Change Materials in a Spherical Capsule: An Experimental Study
,”
ASME J. Heat Transfer
,
140
(
2
), p.
022301
.10.1115/1.4037776
10.
Fan
,
L.-W.
,
Zhu
,
Z.-Q.
,
Zeng
,
Y.
,
Xiao
,
Y.-Q.
,
Liu
,
X.-L.
,
Wu
,
Y.-Y.
,
Ding
,
Q.
,
Yu
,
Z.-T.
, and
Cen
,
K.-F.
,
2015
, “
Transient Performance of a PCM-Based Heat Sink With High Aspect-Ratio Carbon Nanofillers
,”
Appl. Therm. Eng.
,
75
, p.
532
.10.1016/j.applthermaleng.2014.10.050
11.
Wang
,
X.-W.
, and
Xu
,
X.-F.
,
2002
, “
Molecular Dynamics Simulation of Heat Transfer and Phase Change During Laser Material Interaction
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
265
274
.10.1115/1.1445289
12.
Yang
,
N.
,
Luo
,
T.-F.
,
Esfarjani
,
K.
,
Henry
,
A.
,
Tian
,
Z.-T.
,
Shiomi
,
J.
,
Chalopin
,
Y.
,
Li
,
B.-W.
, and
Chen
,
G.
,
2015
, “
Thermal Interface Conductance Between Aluminum and Silicon by Molecular Dynamics Simulations
,”
J. Comput. Theor. Nanosci.
,
12
(
2
), pp.
168
174
.10.1166/jctn.2015.3710
13.
Rigby
,
D.
, and
Roe
,
R. J.
,
1987
, “
Molecular Dynamics Simulation of Polymer Liquid and Glass. I. Glass Transition
,”
J. Chem. Phys.
,
87
(
12
), pp.
7285
7292
.10.1063/1.453321
14.
Yamamoto
,
T.
,
2001
, “
Molecular Dynamics Simulation of Polymer Ordering—II: Crystallization From the Melt
,”
J. Chem. Phys.
,
115
(
18
), p.
8675
.10.1063/1.1410377
15.
Babaei
,
H.
,
Keblinski
,
P.
, and
Khodadadi
,
J. M.
,
2013
, “
Thermal Conductivity Enhancement of Paraffins by Increasing the Alignment of Molecules Through Adding CNT/Graphene
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
209
216
.10.1016/j.ijheatmasstransfer.2012.11.013
16.
Rastgarkafshgarkolaei
,
R.
,
Zeng
,
Y.
, and
Khodadadi
,
J. M.
,
2016
, “
A Molecular Dynamics Study of the Effect of Thermal Boundary Conductance on Thermal Transport of Ideal Crystal of n-Alkanes With Different Number of Carbon Atoms
,”
J. Appl. Phys.
,
119
(
20
), p.
205107
.10.1063/1.4952411
17.
Sastri
,
S.
, and
Rao
,
K.
,
1999
, “
A New Temperature-Thermal Conductivity Relationship for Predicting Saturated Liquid Thermal Conductivity
,”
Chem. Eng. J.
,
74
(
3
), pp.
161
169
.10.1016/S1385-8947(99)00046-7
18.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Bessho
,
T.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2017
, “
Molecular Dynamics Study on the Role of Hydroxyl Groups in Heat Conduction in Liquid Alcohols
,”
Int. J. Heat Mass Transfer
,
108
, pp.
749
759
.10.1016/j.ijheatmasstransfer.2016.12.045
19.
Horta
,
B. A. C.
,
Fuchs
,
P. F. J.
,
van Gunsteren
,
W. F.
, and
Hünenberger
,
P. H.
,
2011
, “
New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters
,”
J. Chem. Theory Comput.
,
7
(
4
), pp.
1016
1031
.10.1021/ct1006407
20.
Schmid
,
N.
,
Eichenberger
,
A. P.
,
Choutko
,
A.
,
Riniker
,
S.
,
Winger
,
M.
,
Mark
,
A. E.
, and
van Gunsteren
,
W. F.
,
2011
, “
Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7
,”
Eur. Biophys. J.
,
40
(
7
), p.
843
.10.1007/s00249-011-0700-9
21.
Oostenbrink
,
C.
,
Villa
,
A.
,
Mark
,
A. E.
,
Van
,
W. F.
, and
Gunsteren
,
W. F.
,
2004
, “
A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6
,”
J. Comb. Chem.
,
25
, pp.
1656
1676
.10.1002/jcc.20090
22.
Malde
,
A. K.
,
Zuo
,
L.
,
Breeze
,
M.
,
Stroet
,
M.
,
Poger
,
D.
,
Nair
,
P. C.
,
Oostenbrink
,
C.
, and
Mark
,
A. E.
,
2011
, “
An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0
,”
J. Chem. Theory Comput.
,
7
(
12
), pp.
4026
4037
.10.1021/ct200196m
23.
Weber
,
W.
,
Hünenberger
,
P. H.
, and
McCammon
,
J. A.
,
2000
, “
Molecular Dynamics Simulations of a Polyalanine Octapeptide Under Ewald Boundary Conditions: Influence of Artificial Periodicity on Peptide Conformation
,”
J. Phys. Chem. B
,
104
(
15
), pp.
3668
3675
.10.1021/jp9937757
24.
Hünenberger
,
P. H.
, and
McCammon
,
J. A.
,
1999
, “
Ewald Artifacts in Computer Simulations of Ionic Solvation and Ion–Ion Interaction: A Continuum Electrostatics Study
,”
J. Chem. Phys.
,
110
(
4
), pp.
1856
1872
.10.1063/1.477873
25.
Yeh
,
I. C.
, and
Hummer
,
G.
,
2004
, “
System-Size Dependence of Diffusion Coefficients and Viscosities From Molecular Dynamics Simulations With Periodic Boundary Conditions
,”
J. Phys. Chem. B
,
108
(
40
), pp.
15873
15879
.10.1021/jp0477147
26.
Plimpton
,
S.
,
Crozier
,
P.
, and
Thompson
,
A.
,
2007
, “
LAMMPS-Large-Scale Atomic/Molecular Massively Parallel Simulator
,” Sandia National Laboratories, Albuquerque, NM.
27.
Tuckerman
,
M.
,
Berne
,
B. J.
, and
Martyna
,
G. J.
,
1992
, “
Reversible Multiple Time Scale Molecular Dynamics
,”
J. Chem. Phys.
,
97
(
3
), pp.
1990
2001
.10.1063/1.463137
28.
Martyna
,
G. J.
,
Klein
,
M. L.
, and
Tuckerman
,
M.
,
1992
, “
Nosé-Hoover Chains: The Canonical Ensemble Via Continuous Dynamics
,”
J. Chem. Phys.
,
97
(
4
), pp.
2635
2643
.10.1063/1.463940
29.
Ungerer
,
P.
,
Tavitian
,
B.
, and
Boutin
,
A.
,
2005
,
Applications of Molecular Simulation in the Oil and Gas Industry: Monte Carlo Methods
, Editions Technip, Paris, France, p.
16
.
30.
Wirnsberger
,
P.
,
Frenkel
,
D.
, and
Dellago
,
C.
,
2015
, “
An Enhanced Version of the Heat Exchange Algorithm With Excellent Energy Conservation Properties
,”
J. Chem. Phys.
,
143
(
12
), p.
124104
.10.1063/1.4931597
31.
Hafskjold
,
B.
,
Ikeshoji
,
T.
, and
Ratkje
,
S. K.
,
1993
, “
On the Molecular Mechanism of Thermal Diffusion in Liquids
,”
Mol. Phys.
,
80
(
6
), pp.
1389
1412
.10.1080/00268979300103101
32.
Ma
,
W. G.
,
Wang
,
H. D.
,
Zhang
,
X.
, and
Wang
,
W.
,
2010
, “
Experiment Study of the Size Effects on Electron-Phonon Relaxation and Electrical Resistivity of Polycrystalline Thin Gold Films
,”
J. Appl. Phys.
,
108
(
6
), p.
064308
.10.1063/1.3482006
33.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.10.1103/PhysRevB.65.144306
34.
Deng
,
C.-C.
,
Yu
,
X.-X.
,
Huang
,
X.-M.
, and
Yang
,
N.
,
2017
, “
Enhancement of Interfacial Thermal Conductance of SiC by Overlapped Carbon Nanotubes and Intertube Atoms
,”
ASME J. Heat Transfer
,
139
(
5
), p.
054504
.10.1115/1.4035998
35.
Li
,
S.-H.
,
Yu
,
X.-X.
,
Bao
,
H.
, and
Yang
,
N.
,
2018
, “
High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
122
(
24
), pp.
13140
13147
.10.1021/acs.jpcc.8b02001
36.
Lin
,
S. T.
,
Blanco
,
M.
, and
Goddard
,
W. A.
, III
,
2003
, “
The Two-Phase Model for Calculating Thermodynamic Properties of Liquids From Molecular Dynamics: Validation for the Phase Diagram of Lennard-Jones Fluids
,”
J. Chem. Phys.
,
119
(
22
), pp.
11792
11805
.10.1063/1.1624057
37.
Inagaki
,
T.
, and
Ishida
,
T.
,
2016
, “
Computational Analysis of Sugar Alcohols as Phase-Change Material: Insight Into the Molecular Mechanism of Thermal Energy Storage
,”
J. Phys. Chem. C
,
120
(
15
), pp.
7903
7915
.10.1021/acs.jpcc.5b11999
38.
Fang
,
X.
,
Fan
,
L.-W.
,
Ding
,
Q.
,
Wang
,
X.
,
Yao
,
X.-L.
,
Hou
,
J.-F.
,
Yu
,
Z.-T.
,
Cheng
,
G.-H.
,
Hu
,
Y.-C.
, and
Cen
,
K.-F.
,
2013
, “
Increased Thermal Conductivity of Eicosane-Based Composite Phase Change Materials in the Presence of Graphene Nanoplatelets
,”
Energy Fuels
,
27
(
7
), pp.
4041
4047
.10.1021/ef400702a
39.
Wohlert
,
J.
,
2014
, “
Vapor Pressures and Heats of Sublimation of Crystalline β-Cellobiose From Classical Molecular Dynamics Simulations With Quantum Mechanical Corrections
,”
J. Phys. Chem. B
,
118
(
20
), pp.
5365
5373
.10.1021/jp501839k
40.
He
,
X.
,
Lopes
,
P. E.
, and
MacKerell
,
A. D.
, Jr.
,
2013
, “
Polarizable Empirical Force Field for Acyclic Polyalcohols Based on the Classical Drude Oscillator
,”
Biopolymers
,
99
(
10
), pp.
724
738
.10.1002/bip.22286
41.
Baker
,
C. M.
,
Anisimov
,
V. M.
, and
MacKerell
,
A. D.
, Jr.
,
2011
, “
Development of CHARMM Polarizable Force Field for Nucleic Acid Bases Based on the Classical Drude Oscillator Model
,”
J. Phys. Chem. B
,
115
(
3
), pp.
580
596
.10.1021/jp1092338
42.
Watanabe
,
T.
,
Sinnott
,
S. B.
,
Tulenko
,
J. S.
,
Grimes
,
R. W.
,
Schelling
,
P. K.
, and
Phillpot
,
S. R.
,
2008
, “
Thermal Transport Properties of Uranium Dioxide by Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
375
(
3
), pp.
388
396
.10.1016/j.jnucmat.2008.01.016
43.
Bresme
,
F.
,
2001
, “
Equilibrium and Nonequilibrium Molecular-Dynamics Simulations of the Central Force Model of Water
,”
J. Chem. Phys.
,
115
(
16
), pp.
7564
7574
.10.1063/1.1407288
44.
Ohara
,
T.
,
1999
, “
Contribution of Intermolecular Energy Transfer to Heat Conduction in a Simple Liquid
,”
J. Chem. Phys.
,
111
(
21
), pp.
9667
9672
.10.1063/1.480338
You do not currently have access to this content.