Abstract

This paper investigates heat transfer of blood vessels subject to transient laser irradiation, where the irradiation is extremely short times and has high power. The modified Fourier heat conduction model (Cattaneo–Christov flux) and Heaviside step function are used in describing the thermal relaxation and temperature jump characteristics in initial time. A novel auxiliary function is introduced to avoid three-level discretization and temporal–spatial mixed derivative, and the numerical solutions are obtained by Crank–Nicolson alternating direction implicit (ADI) scheme. Results indicate that the temperature distributions in blood vessels strongly depend on the blood property, the laser exposure time, the blood flowrate (Reynolds number) and the thermal relaxation parameter. The isothermal curve exhibits asymmetric characteristics due to the impact of blood flow, and the higher blood velocity leads to more asymmetric isotherm and less uniform thermal distribution. Further, the heat-flux relaxation phenomenon is also captured, and its effect on blood temperature becomes more noticeable as blood flows downstream of blood vessels.

References

References
1.
Yilbas
,
B. S.
, and
Kalyon
,
M.
,
2002
, “
Analytical Solution for Pulsed Laser Heating Process: Convective Boundary Condition Case
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1571
1582
.10.1016/S0017-9310(01)00239-3
2.
Khan
,
O. U.
, and
Yilbas
,
B. S.
,
2004
, “
Laser Heating of Sheet Metal and Thermal Stress Development
,”
J. Mater. Process Technol.
,
155
, pp.
2045
2050
.10.1016/j.jmatprotec.2004.04.229
3.
Lacot
,
E.
,
Day
,
R.
, and
Stoeckel
,
F.
,
2001
, “
Coherent Laser Detection by Frequency-Shifted Optical Feedback
,”
Phys. Rev. A
,
64
(
4
), p.
043815
.10.1103/PhysRevA.64.043815
4.
Ermilov
,
S. A.
,
Khamapirad
,
T.
,
Conjusteau
,
A.
,
Leonard
,
M. H.
,
Lacewell
,
R.
,
Mehta
,
K.
,
Miller
,
T.
, and
Oraevsky
,
A. A.
,
2009
, “
Laser Optoacoustic Imaging System for Detection of Breast Cancer
,”
J. Biomed. Opt.
,
14
(
2
), p.
024007
.10.1117/1.3086616
5.
Hahl
,
J.
,
Haapiainen
,
R.
,
Ovaska
,
J.
,
Puolakkainen
,
P.
, and
Schröder
,
T.
,
1990
, “
Laser-Induced Hyperthermia in the Treatment of Liver Tumors
,”
Laser Surg. Med.
,
10
(
4
), pp.
319
321
.10.1002/lsm.1900100403
6.
Vogl
,
T. J.
,
Müller
,
P. K.
,
Hammerstingl
,
R.
,
Weinhold
,
N.
,
Mack
,
M. G.
,
Philipp
,
C.
,
Deimling
,
M.
,
Beuthan
,
J.
,
Pegios
,
W.
, and
Riess
,
H.
,
1995
, “
Malignant Liver Tumors Treated With MR Imaging-Guided Laser-Induced Thermotherapy: Technique and Prospective Results
,”
Radiology
,
196
(
1
), pp.
257
265
.10.1148/radiology.196.1.7540310
7.
Manivasagan
,
P.
,
Bui
,
N. Q.
,
Bharathiraja
,
S.
,
Moorthy
,
M. S.
,
Oh
,
Y. O.
,
Song
,
K.
, and
Oh
,
J.
,
2017
, “
Multifunctional Biocompatible Chitosan-Polypyrrole Nanocomposites as Novel Agents for Photoacoustic Imaging-Guided Photothermal Ablation of Cancer
,”
Sci. Rep.
,
7
, p.
43593
.10.1038/srep43593
8.
Oladipo
,
A. O.
,
Oluwafemi
,
O. S.
,
Songca
,
S. P.
,
Sukhbaatar
,
A.
,
Mori
,
S.
,
Okajima
,
J.
,
Komiya
,
A.
,
Maruyama
,
S.
, and
Kodama
,
T.
,
2017
, “
A Novel Treatment for Metastatic Lymph Nodes Using Lymphatic Delivery and Photothermal Therapy
,”
Sci. Rep.
,
7
, p.
45459
.10.1038/srep45459
9.
Letokhov
,
V. S.
,
1985
, “
Laser Biology and Medicine
,”
Nature
,
316
(
6026
), p.
325
.10.1038/316325a0
10.
Isner
,
J.
, and
Clarke
,
R.
,
1984
, “
The Current Status of Lasers in the Treatment of Cardiovascular Disease
,”
IEEE J. Quantum Elect.
,
20
(
12
), pp.
1406
1420
.10.1109/JQE.1984.1072324
11.
Topaz
,
O.
, ed.,
2015
,
Lasers in Cardiovascular Interventions
,
Springer
,
Berlin
.
12.
Mi
,
X. Q.
,
Chen
,
J. Y.
,
Liang
,
Z. J.
, and
Zhou
,
L. W.
,
2004
, “
In Vitro Effects of Helium-Neon Laser Irradiation on Human Blood: Blood Viscosity and Deformability of Erythrocytes
,”
Photomed. Laser Ther.
,
22
(
6
), pp.
477
482
.10.1089/pho.2004.22.477
13.
Galanzha
,
E. I.
,
Menyaev
,
Y. A.
,
Yadem
,
A. C.
,
Sarimollaoglu
,
M.
,
Juratli
,
M. A.
,
Nedosekin
,
D. A.
,
Foster
,
S. R.
,
Jamshidi-Parsian
,
A.
,
Siegel
,
E. R.
,
Makhoul
,
I.
,
Hutchins
,
L. F.
,
Suen
,
J. Y.
, and
Zharov
,
V. P.
,
2019
, “
In Vivo Liquid Biopsy Using Cytophone Platform for Photoacoustic Detection of Circulating Tumor Cells in Patients With Melanoma
,”
Sci. Transl. Med.
,
11
(
496
), p.
eaat5857
.10.1126/scitranslmed.aat5857
14.
Liu
,
L. H.
,
Tan
,
H. P.
, and
Tong
,
T. W.
,
2001
, “
Non-Fourier Effects on Transient Temperature Response in Semitransparent Medium Caused by Laser Pulse
,”
Int. J. Heat Mass Transfer
,
44
(
17
), pp.
3335
3344
.10.1016/S0017-9310(00)00364-1
15.
Zhang
,
L.
, and
Shang
,
X.
,
2015
, “
Analytical Solution to Non-Fourier Heat Conduction as a Laser Beam Irradiating on Local Surface of a Semi-Infinite Medium
,”
Int. J. Heat Mass Transfer
,
85
, pp.
772
780
.10.1016/j.ijheatmasstransfer.2015.02.024
16.
Joseph
,
D. D.
, and
Preziosi
,
L.
,
1989
, “
Heat Waves
,”
Rev. Mod. Phys.
,
61
(
1
), p.
41
.10.1103/RevModPhys.61.41
17.
Ozisik
,
M. N.
,
1993
,
Heat Conduction
,
Wiley
,
Hoboken, NJ
.
18.
Cattaneo
,
C.
,
1958
, “
A Form of Heat Conduction Equations Which Eliminates the Paradox of Instantaneous Propagation
,”
Comptes Rendus
,
247
(
4
), pp.
431
433
.
19.
Vernotte
,
P.
,
1958
, “
Paradoxes in the Continuous Theory of the Heat Equation
,”
C. R. Acad. Sci.
,
246
(
3
), pp.
154
153
.
20.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
,
1999
, “
Extended Irreversible Thermodynamics Revisited
,”
Rep. Prog. Phys.
,
62
(
7
), p.
1035
.10.1088/0034-4885/62/7/201
21.
Kumar
,
P.
,
Kumar
,
D.
, and
Rai
,
K. N.
,
2016
, “
Non-Linear Dual-Phase-Lag Model for Analyzing Heat Transfer Phenomena in Living Tissues During Thermal Ablation
,”
J. Therm. Biol.
,
60
, pp.
204
212
.10.1016/j.jtherbio.2016.07.017
22.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
(
3
), pp.
555
560
.10.1115/1.2910422
23.
Mitra
,
K.
,
Kumar
,
S.
,
Vedevarz
,
A.
, and
Moallemi
,
M. K.
,
1995
, “
Experimental Evidence of Hyperbolic Heat Conduction in Processed Meat
,”
ASME J. Heat Transfer
,
117
(
3
), pp.
568
573
.10.1115/1.2822615
24.
Qi
,
H.
, and
Guo
,
X.
,
2014
, “
Transient Fractional Heat Conduction With Generalized Cattaneo Model
,”
Int. J. Heat Mass Transfer
,
76
, pp.
535
539
.10.1016/j.ijheatmasstransfer.2013.12.086
25.
Zhang
,
Y.
,
Chen
,
B.
, and
Li
,
D.
,
2017
, “
Non-Fourier Effect of Laser-Mediated Thermal Behaviors in Bio-Tissues: A Numerical Study by the Dual-Phase-Lag Model
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1428
1438
.10.1016/j.ijheatmasstransfer.2017.01.010
26.
Jaunich
,
M.
,
Raje
,
S.
,
Kim
,
K.
,
Mitra
,
K.
, and
Guo
,
Z.
,
2008
, “
Bio-Heat Transfer Analysis During Short Pulse Laser Irradiation of Tissues
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5511
5521
.10.1016/j.ijheatmasstransfer.2008.04.033
27.
Xu
,
F.
,
Seffen
,
K. A.
, and
Lu
,
T. J.
,
2008
, “
Non-Fourier Analysis of Skin Biothermomechanics
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2237
2259
.10.1016/j.ijheatmasstransfer.2007.10.024
28.
Christov
,
C. I.
, and
Jordan
,
P. M.
,
2005
, “
Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media
,”
Phys. Rev. Lett.
,
94
(
15
), p.
154301
.10.1103/PhysRevLett.94.154301
29.
Christov
,
C. I.
,
2009
, “
On Frame Indifferent Formulation of the Maxwell–Cattaneo Model of Finite-Speed Heat Conduction
,”
Mech. Res. Commun.
,
36
(
4
), pp.
481
486
.10.1016/j.mechrescom.2008.11.003
30.
Straughan
,
B.
,
2010
, “
Thermal Convection With the Cattaneo–Christov Model
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
95
98
.10.1016/j.ijheatmasstransfer.2009.10.001
31.
Han
,
S.
,
Zheng
,
L.
,
Li
,
C.
, and
Zhang
,
X.
,
2014
, “
Coupled Flow and Heat Transfer in Viscoelastic Fluid With Cattaneo–Christov Heat Flux Model
,”
Appl. Math. Lett.
,
38
, pp.
87
93
.10.1016/j.aml.2014.07.013
32.
Mustafa
,
M.
,
2015
, “
Cattaneo-Christov Heat Flux Model for Rotating Flow and Heat Transfer of Upper-Convected Maxwell Fluid
,”
AIP Adv.
,
5
(
4
), p.
047109
.10.1063/1.4917306
33.
Liu
,
L.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2016
, “
Fractional Anomalous Diffusion With Cattaneo–Christov Flux Effects in a Comb-Like Structure
,”
Appl. Math. Model.
,
40
(
13–14
), pp.
6663
6675
.10.1016/j.apm.2016.02.013
34.
Haddad
,
S. A. M.
,
2014
, “
Thermal Instability in Brinkman Porous Media With Cattaneo–Christov Heat Flux
,”
Int. J. Heat Mass Transfer
,
68
, pp.
659
668
.10.1016/j.ijheatmasstransfer.2013.09.039
35.
Kumar
,
S.
, and
Srivastava
,
A.
,
2016
, “
Numerical Investigation of the Influence of Pulsatile Blood Flow on Temperature Distribution Within the Body of Laser-Irradiated Biological Tissue Phantoms
,”
Int. J. Heat Mass Transfer
,
95
, pp.
662
677
.10.1016/j.ijheatmasstransfer.2015.12.023
36.
Prakash
,
J.
, and
Ogulu
,
A.
,
2007
, “
A Study of Pulsatile Blood Flow Modeled as a Power Law Fluid in a Constricted Tube
,”
Int. Commun. Heat Mass
,
34
(
6
), pp.
762
768
.10.1016/j.icheatmasstransfer.2007.04.001
37.
Zhou
,
J.
,
Chen
,
J. K.
, and
Zhang
,
Y.
,
2009
, “
Dual-Phase Lag Effects on Thermal Damage to Biological Tissues Caused by Laser Irradiation
,”
Comput. Biol. Med.
,
39
(
3
), pp.
286
293
.10.1016/j.compbiomed.2009.01.002
38.
Shih
,
T.-C.
,
Horng
,
T.-L.
,
Huang
,
H.-W.
,
Ju
,
K.-C.
,
Huang
,
T.-C.
,
Chen
,
P.-Y.
,
Ho
,
Y.-J.
, and
Lin
,
W.-L.
,
2012
, “
Numerical Analysis of Coupled Effects of Pulsatile Blood Flow and Thermal Relaxation Time During Thermal Therapy
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3763
3773
.10.1016/j.ijheatmasstransfer.2012.02.069
39.
Baptista
,
A.
,
Alves
,
M. A.
, and
Coelho
,
P. M.
,
2014
, “
Heat Transfer in Fully Developed Laminar Flow of Power Law Fluids
,”
ASME J. Heat Transfer
,
136
(
4
), p.
041702
.10.1115/1.4025662
40.
Araújo
,
A.
,
Neves
,
C.
, and
Sousa
,
E.
,
2014
, “
An Alternating Direction Implicit Method for a Second-Order Hyperbolic Diffusion Equation With Convection
,”
Appl. Math. Comput.
,
239
, pp.
17
28
.10.1016/j.amc.2014.04.044
41.
Barton
,
J. K.
,
Popok
,
D. P.
, and
Black
,
J. F.
,
2001
, “
Thermal Analysis of Blood Undergoing Laser Photocoagulation
,”
IEEE J. Sel. Top. Quan.
,
7
(
6
), pp.
936
943
.10.1109/2944.983297
42.
Askarizadeh
,
H.
, and
Ahmadikia
,
H.
,
2015
, “
Analytical Study on the Transient Heating of a Two-Dimensional Skin Tissue Using Parabolic and Hyperbolic Bioheat Transfer Equations
,”
Appl. Math. Model.
,
39
(
13
), pp.
3704
3720
.10.1016/j.apm.2014.12.003
43.
Liu
,
J.
, and
Tang
,
K.
,
2010
, “
A New Unconditionally Stable ADI Compact Scheme for the Two-Space-Dimensional Linear Hyperbolic Equation
,”
Int. J. Comput. Math.
,
87
(
10
), pp.
2259
2267
.10.1080/00207160802624133
You do not currently have access to this content.