Abstract

This work examines the steady three-dimensional forced convective thermal boundary-layer flow of laminar and incompressible fluid in a porous medium. In this analysis, it is assumed that the solid phase and the fluid phase, which is immersed in a porous medium are subjected to local thermal nonequilibrium (LTNE) conditions, which essentially leads to one thermal boundary-layer equation for each phase. Suitable similarity transformations are introduced to reduce the boundary-layer equations into system of nonlinear ordinary differential equations, which are analyzed numerically using an implicit finite difference-based Keller-box method. The numerical results are further confirmed by the asymptotic solution of the same system for large three-dimensionality parameter, and the corresponding results agree well. Our results show that the thickness of boundary layer is always thinner for all permeability parameters tested when compared to the nonporous case. Also, it is noticed that the temperature of solid phase is found to be higher than the corresponding fluid phase for any set of parameters. There is a visible temperature difference in the two phases when the microscopic interphase rate is quite large. The physical hydrodynamics to these parameters is studied in some detail.

References

References
1.
Wooding
,
R. A.
,
1960
, “
Rayleigh Instability of a Thermal Boundary-Layer in Flow a Porous Medium
,”
J. Fluid Mech.
,
9
(
2
), pp.
183
192
.10.1017/S0022112060001031
2.
Combarnous
,
M. A.
, and
Bia
,
P.
,
1971
, “
Combined Free and Forced Convection in Porous Medium
,”
Soc. Pet. Eng. J.
,
11
(
4
), pp.
399
405
.10.2118/3192-PA
3.
Nazar
,
R.
,
Amin
,
N.
, and
Pop
,
I.
,
2004
, “
Unsteady Mixed Convection Boundary-Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2681
2688
.10.1016/j.ijheatmasstransfer.2004.01.002
4.
Straughan
,
B.
,
2015
,
Convection With Local Thermal Non-Equilibrium and Micro-Fluidic Effects
,
Springer
,
New York
.
5.
Rees
,
D. A. S.
, and
Pop
,
I.
,
2000
, “
Vertical Free Convective Boundary-Layer Flow in a Porous Medium Using a Thermal Non-Equilibrium Model
,”
J. Porous Media
,
3
(
1
), pp.
31
44
.10.1615/JPorMedia.v3.i1.30
6.
Kuznetsov
,
A. V.
,
1996
, “
A Perturbation Solution for a Non-Thermal Equilibrium Fluid Flow Through a Three-Dimensional Sensible Heat Storage Packed Bed
,”
ASME J. Heat Transfer
,
118
(
2
), pp.
508
510
.10.1115/1.2825881
7.
Kuznetsov
,
A. V.
,
1988
, “
Thermal Nonequilibrium Forced Convection in Porous Media
,”
Transport Phenomena in Porous Media
,
D. B.
Ingham
and
I.
Pop
, eds.,
Oxford
,
Pergamon, Turkey
, pp.
103
130
.
8.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2006
, “
Thermally Developing Forced Convection in a Bidiperse Porous Medium
,”
J. Porous Media
,
9
, pp.
393
402
.10.1615/JPorMedia.v9.i5.10
9.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
,
Springer
,
New York
.
10.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
, and
Xiong
,
M.
,
2002
, “
Effects of Local Thermal Non-Equilibrium on Thermally Developing Forced Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
,
45
(
25
), pp.
4949
4955
.10.1016/S0017-9310(02)00203-X
11.
Rees
,
D. A. S.
,
2003
, “
Vertical Free Convective Boundary-Layer Flow in a Porous Medium Using a Thermal Non-Equilibrium Model: Elliptical Effects
,”
J. Appl. Math. Phys.
,
54
(
3
), pp.
437
448
.10.1007/s00033-003-0032-4
12.
Rosenhead
,
L.
,
1963
,
Laminar Boundary Layers
,
Clarendon Press
,
Oxford, UK
.
13.
Howarth
,
L.
,
1951
, “
Note on the Boundary Layers on a Rotating Sphere
,”
Philos. Mag.
,
42
(
334
), pp.
1308
1315
.10.1080/14786444108561386
14.
Davey
,
A.
,
1961
, “
Boundary Layer Flow at a Saddle Point of Attachment
,”
J. Fluid Mech.
,
10
(
4
), pp.
593
610
.10.1017/S0022112061000391
15.
Davey
,
A.
, and
Schofield
,
D.
,
1967
, “
Three-Dimensional Flow Near a Two-Dimensional Stagnation Point
,”
J. Fluid Mech.
,
28
(
1
), pp.
149
151
.10.1017/S0022112067001958
16.
Libby
,
P. A.
,
1967
, “
Heat and Mass Transfer at a General Three-Dimensional Stagnation Point
,”
AIAA J
,
5
(
3
), pp.
507
517
.10.2514/3.4008
17.
Khan
,
J. A.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2014
, “
On Three-Dimensional Flow and Heat Transfer Over a Non-Linearly Stretching Sheet: Analytical and Numerical Solutions
,”
PLoS One
,
9
(
9
), p.
e107287
.10.1371/journal.pone.0107287
18.
Liu
,
I. C.
,
Wang
,
H.
, and
Peng
,
Y. P.
,
2013
, “
Flow and Heat Transfer for Three-Dimensional Flow Over an Exponentially Stretching Surface
,”
Chem. Eng. Commun.
,
200
(
2
), pp.
253
268
.10.1080/00986445.2012.703148
19.
Turkyilmazoglu
,
M.
,
2012
, “
Three Dimensional MHD Stagnation Flow Due to a Stretchable Rotating Disk
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6959
6965
.10.1016/j.ijheatmasstransfer.2012.05.089
20.
Turkyilmazoglu
,
M.
,
2014
, “
Three Dimensional MHD Flow and Heat Transfer Over a Stretching/Shrinking Surface in a Viscoelastic Fluid With Various Physical Effects
,”
Int. J. Heat Mass Transfer
,
78
, pp.
150
155
.10.1016/j.ijheatmasstransfer.2014.06.052
21.
Weidman
,
P. D.
,
2012
, “
Non-Axisymmetric Homann Stagnation-Point Flows
,”
J. Fluid Mech.
,
702
, pp.
460
469
.10.1017/jfm.2012.197
22.
Wang
,
C. Y.
,
1984
, “
Three-Dimensional Flow Due to Stretching Flat Surface
,”
Phys. Fluids
,
27
(
8
), pp.
1915
1917
.10.1063/1.864868
23.
Aboeldahab
,
E. M.
, and
Azzam
,
G. E. D. A.
,
2006
, “
Unsteady Three-Dimensional Combined Heat and Mass Free Convective Flow Over a Stretching Surface With Time-Dependent Chemical Reaction
,”
Acta Mech.
,
184
(
1–4
), pp.
121
136
.10.1007/s00707-006-0321-z
24.
Xu
,
H.
,
Liao
,
S. J.
, and
Pop
,
I.
,
2007
, “
Series Solutions of Unsteady Three-Dimensional MHD Flow and Heat Transfer in the Boundary Layer Over an Impulsively Stretching Plate
,”
Eur. J. Mech. B/Fluids
,
26
(
1
), pp.
15
27
.10.1016/j.euromechflu.2005.12.003
25.
Narasimhan
,
A.
,
2016
,
Essentials of Heat and Fluid Flow in Porous Media
,
ANE Books Pvt., Ltd
,
New Delhi, India
.
26.
Schlichting
,
H.
, and
Gersten
,
K.
,
2004
,
Boundary Layer Theory
, 8th ed.,
Springer
,
New York
.
27.
Keller
,
H. B.
,
1970
, “
A New Difference Scheme for Parabolic Problems
,”
Numerical Solutions of Partial Differential Equations
,
Academic Press
,
New York
, pp.
369
377
.
28.
Kudenatti
,
R. B.
,
Gogate
,
S. P. S.
, and
Bujurke
,
N. M.
,
2018
, “
Asymptotic and Numerical Solutions of Three-Dimensional Boundary-Layer Flow Past a Moving Wedge
,”
Math. Meth. Appl. Sci.
,
41
(
7
), pp.
2602
2614
.10.1002/mma.4761
29.
Kudenatti
,
R. B.
, and
Kirsur
,
S. R.
,
2017
, “
Numerical and Asymptotic Study of Non-Axisymmetric Magnetohydrodynamic Boundary Layer Stagnation-Point Flows
,”
Math. Meth. Appl. Sci.
,
40
(
16
), pp.
5841
5850
.10.1002/mma.4433
30.
Rosali
,
H.
,
Ishak
,
A.
, and
Pop
,
I.
,
2016
, “
Mixed Convection Boundary Layer Flow Near the Lower Stagnation Point of a Cylinder Embedded in a Porous Medium Using a Thermal Non-Equilibrium Model
,”
ASME J. Heat Transfer
,
138
, p.
084501
.10.1115/1.4033164
31.
Celli
,
M.
,
Rees
,
D. A. S.
, and
Barletta
,
A.
,
2010
, “
The Effect of Local Thermal Non-Equilibrium on Forced Convection Boundary Layer Flow From a Heated Surface in Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3533
3539
.10.1016/j.ijheatmasstransfer.2010.04.014
You do not currently have access to this content.