Abstract

The effects of nanoferrofluids on the overall performance of curved tubes (with various radii of curvature) are experimentally investigated under the influence of constant and alternating magnetic fields. The working fluids are distilled water and a ferrofluid (Fe3O4/water) with 0.2% and 0.4% volume concentrations. The experiments are performed under a constant wall heat flux (≈12,700 W/m2) using a chrome–nickel electric heater element insulated by refractory fabrics. The mass flowrate is varied from 0.2 to 0.7 kg/min. There are three key parameters, namely, type of the magnetic field, volume of concentration of nanoparticles, and radius of curvature of the pipes that affect the hydrodynamic and thermal characteristics of the system, but the latter is comparatively the dominant factor. If the Reynolds number is 930 in the pipe of 0.2-m diameter of curvature, and also a 50-Hz alternating magnetic field is applied to the curved pipe, the results reveal that using a 0.4% ferrofluid, Nusselt number is improved by 32% compared to that of the distilled water. Nevertheless, due to the undesirable influence of pressure gradient, the best overall effectiveness of 1.12 is attained in the circumstances but in the pipe of 0.4-m diameter of curvature.

References

References
1.
Bahiraei
,
M.
,
Rahmani
,
R.
,
Yaghoobi
,
A.
,
Khodabandeh
,
E.
,
Mashayekhi
,
R.
, and
Amani
,
M.
,
2018
, “
Recent Research Contributions Concerning Use of Nanofluids in Heat Exchangers: A Critical Review
,”
Appl. Therm. Eng.
,
133
, pp.
137
159
.10.1016/j.applthermaleng.2018.01.041
2.
Bahiraei
,
M.
, and
Heshmatian
,
S.
,
2018
, “
Electronics Cooling With Nanofluids: A Critical Review
,”
Energy Convers. Manage.
,
172
, pp.
438
456
.10.1016/j.enconman.2018.07.047
3.
Khairul
,
M. A.
,
Doroodchi
,
E.
,
Azizian
,
R.
, and
Moghtaderi
,
B.
,
2017
, “
Advanced Applications of Tunable Ferrofluids in Energy Systems and Energy Harvesters: A Critical Review
,”
Energy Convers. Manage.
,
149
, pp.
660
674
.10.1016/j.enconman.2017.07.064
4.
Elsheikh
,
A. L.
,
Sharshir
,
S. W.
,
Mostafa
,
M. E.
,
Essa
,
F. A.
, and
Ali
,
M. K. A.
,
2018
, “
Applications of Nanofluids in Solar Energy: A Review of Recent Advances
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
3483
3502
.10.1016/j.rser.2017.10.108
5.
Hatami
,
M.
,
Mohammadi-Rezaei
,
S.
,
Tahari
,
M.
, and
Jing
,
D.
,
2018
, “
Recent Developments in Magneto-Hydrodynamic Fe3O4 Nanofluids for Different Molecular Applications: A Review Study
,”
J. Mol. Liq.
,
250
, pp.
244
258
.10.1016/j.molliq.2017.11.171
6.
Popplewell
,
J.
,
Al-Qenaie
,
A.
,
Charles
,
S. W.
,
Moskowitz
,
R.
, and
Raj
,
K.
,
1982
, “
Thermal Conductivity Measurements on Ferrofluids
,”
Colloid Polym. Sci.
,
260
(
3
), pp.
333
338
.10.1007/BF01447973
7.
Buongiorno
,
J.
,
Venerus
,
D. C.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S.-Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
J. Appl. Phys
,
106
(
9
), p.
094312
.10.1063/1.3245330
8.
Tangthieng
,
C.
,
Finlayson
,
B. A.
,
Maulbetsch
,
J.
, and
Cader
,
T.
,
1999
, “
Heat Transfer Enhancement in Ferrofluids Subjected to Steady Magnetic Fields
,”
J. Magn. Magn. Mater.
,
201
(
1–3
), pp.
252
255
.10.1016/S0304-8853(99)00062-1
9.
Li
,
Q.
,
Xuan
,
Y.
, and
Wang
,
J.
,
2005
, “
Experimental Investigations on Transport Properties of Magnetic Fluids
,”
Exp. Therm. Fluid Sci.
,
30
(
2
), pp.
109
116
.10.1016/j.expthermflusci.2005.03.021
10.
Gubin
,
S. P.
,
Koksharov
,
Y. A.
,
Khomutov
,
G. B.
, and
Yurkov
,
G. Y.
,
2005
, “
Magnetic Nanoparticles: Preparation Structure and Properties
,”
Russ. Chem. Rev.
,
74
(
6
), pp.
489
520
.10.1070/RC2005v074n06ABEH000897
11.
Das
,
P. K.
,
2017
, “
A Review Based on the Effect and Mechanism of Thermal Conductivity of Normal Nanofluids and Hybrid Nanofluids
,”
J. Mol. Liq.
,
240
, pp.
420
446
.10.1016/j.molliq.2017.05.071
12.
Ebrahimi-Moghadam
,
A.
, and
Moghadam
,
A. J.
,
2019
, “
Optimal Design of Geometrical Parameters and Flow Characteristics for Al2O3/Water Nanofluid Inside Corrugated Heat Exchangers by Using Entropy Generation Minimization and Genetic Algorithm Methods
,”
Appl. Therm. Eng.
,
149
, pp.
889
898
.10.1016/j.applthermaleng.2018.12.068
13.
Hong
,
R. Y.
,
Zhang
,
S. Z.
,
Han
,
Y. P.
,
Li
,
H. Z.
,
Ding
,
J.
, and
Zheng
,
Y.
,
2006
, “
Preparation, Characterization and Application of Bilayer Surfactant-Stabilized Ferrofluids
,”
Powder Technol.
,
170
(
1
), pp.
1
11
.10.1016/j.powtec.2006.08.017
14.
Ren
,
Z.
,
Han
,
Y.
,
Hong
,
R.
,
Ding
,
J.
, and
Li
,
H.
,
2008
, “
On the Viscosity of Magnetic Fluid With Low and Moderate Solid Fraction
,”
Particuology
,
6
(
3
), pp.
191
198
.10.1016/j.partic.2008.01.004
15.
Khedkar
,
R. S.
,
Kiran
,
A. S.
,
Sonawane
,
S. S.
,
Wasewar
,
K. L.
, and
Umare
,
S. S.
,
2013
, “
Thermo-Physical Properties Measurement of Water Based Fe3O4 Nanofluids
,”
Carbon-Sci. Technol.
,
5
(1), pp.
187
191
.https://www.ingentaconnect.com/content/doaj/09740546/2013/00000005/00000001/art00001
16.
Gu
,
H.
,
Tang
,
X.
,
Hong
,
R. Y.
,
Feng
,
W. G.
,
Xie
,
H. D.
,
Chen
,
D. X.
, and
Badami
,
D.
,
2013
, “
Ubbelohde Viscometer Measurement Water-Based Fe3O4 Magnetic Fluid Prepared by Coprecipitation
,”
J. Magn. Magn. Mater.
,
348
, pp.
88
92
.10.1016/j.jmmm.2013.07.033
17.
Koca
,
H. D.
,
Doganay
,
S.
,
Turgut
,
A.
,
Tavman
,
I. H.
,
Saidur
,
R.
, and
Mahbubul
,
I. M.
,
2018
, “
Effect of Particle Size on the Viscosity of Nanofluids: A Review
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
1664
1674
.10.1016/j.rser.2017.07.016
18.
Hasona
,
W. M.
,
El-Shekhipy
,
A. A.
, and
Ibrahim
,
M. G.
,
2018
, “
Combined Effects of Magnetohydrodynamic and Temperature Dependent Viscosity on Peristaltic Flow of Jeffrey Nanofluid Through a Porous Medium: Applications to Oil Refinement
,”
Int. J. Heat Mass Transf.
,
126
, pp.
700
714
.10.1016/j.ijheatmasstransfer.2018.05.087
19.
Bagheli
,
S.
,
Fadafan
,
H. K.
,
Orimi
,
R. L.
, and
Ghaemi
,
M.
,
2015
, “
Synthesis and Experimental Investigation of the Electrical Conductivity of Water Based Magnetite Nanofluids
,”
Powder Technol.
,
274
, pp.
426
430
.10.1016/j.powtec.2015.01.050
20.
Shukla
,
K. N.
,
Solomon
,
A. B.
,
Pillai
,
B. C.
, and
Ibrahim
,
M.
,
2010
, “
Thermal Performance of Cylindrical Heat Pipe Using Nanofluids
,”
J. Thermophys. Heat Transf.
,
24
(
4
), pp.
796
802
.10.2514/1.48749
21.
Kordi
,
M.
,
Moghadam
,
A. J.
, and
Afshari
,
E.
,
2019
, “
Effects of Cooling Passages and Nanofluid Coolant on Thermal Performance of Polymer Electrolyte Membrane Fuel Cells
,”
ASME J. Elechtrochem. En. Conv. Stor.
,
16
(
3
), p.
031001
.10.1115/1.4042254
22.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.10.1016/j.ijheatfluidflow.2009.03.001
23.
Baniamerian
,
Z.
, and
Mashayekhi
,
M.
,
2017
, “
Experimental Assessment of Saturation Behavior of Boiling Nanofluids: Pressure and Temperature
,”
J. Thermophys. Heat Transf.
,
31
(
3
), pp.
732
738
.10.2514/1.T5081
24.
Mahian
,
O.
,
Kianifar
,
A.
,
Heris
,
S. Z.
, and
Wongwises
,
S.
,
2016
, “
Natural Convection of Silica Nanofluids in Square and Triangular Enclosures: Theoretical and Experimental Study
,”
Int. J Heat Mass Transf.
,
99
, pp.
792
804
.10.1016/j.ijheatmasstransfer.2016.03.045
25.
Moghadam
,
A. J.
,
Farzane-Gord
,
M.
,
Sajadi
,
M.
, and
Hoseyn-Zadeh
,
M.
,
2014
, “
Effects of CuO/Water Nanofluid on the Efficiency of a Flat-Plate Solar Collector
,”
Exp. Therm. Fluid Sci.
,
58
, pp.
9
14
.10.1016/j.expthermflusci.2014.06.014
26.
Dalvand
,
H. M.
, and
Moghadam
,
A. J.
,
2019
, “
Experimental Investigation of a Water/Nanofluid Jacket Performance in Stack Heat Recovery
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
657
669
.10.1007/s10973-018-7220-0
27.
Sharifpur
,
M.
,
Solomon
,
A. B.
,
Ottermann
,
T. L.
, and
Meyer
,
J. P.
,
2018
, “
Optimum Concentration of Nanofluids for Heat Transfer Enhancement Under Cavity Flow Natural Convection With TiO2—Water
,”
Int. Commun. Heat Mass Transf.
,
98
, pp.
297
303
.10.1016/j.icheatmasstransfer.2018.09.010
28.
Esfe
,
M. H.
,
Saedodin
,
S.
,
Mahian
,
O.
, and
Wongwises
,
S.
,
2014
, “
Efficiency of Ferromagnetic Nanoparticles Suspended in Ethylene Glycol for Applications in Energy Devices: Effects of Particle Size, Temperature, and Concentration
,”
Int. Commun. Heat Mass Transf.
,
58
, pp.
138
146
.10.1016/j.icheatmasstransfer.2014.08.035
29.
Vatani
,
A.
,
Woodfield
,
P. L.
,
Nguyen
,
N.
, and
Dao
,
D. V.
,
2017
, “
Thermomagnetic Convection Around a Current-Carrying Wire in Ferrofluid
,”
ASME J. Heat Transfer
,
139
(
10
), p.
104502
.10.1115/1.4036688
30.
Zhang
,
L.
,
Liu
,
Y.
,
Wang
,
Y.
,
Jin
,
L.
,
Zhang
,
Q.
, and
Hu
,
W.
,
2018
, “
Experimental Study on the Enhancement of Mass Transfer Utilizing Fe3O4 Nanofluids
,”
ASME J. Heat Transfer
,
140
(
1
), p.
012404
.10.1115/1.4037398
31.
Hussain
,
S.
,
Ahmed
,
S. E.
, and
Saleem
,
F.
,
2018
, “
Impact of Periodic Magnetic Field on Entropy Generation and Mixed Convection
,”
J. Thermophys. Heat Transf.
,
32
(
4
), pp.
999
1012
.10.2514/1.T5430
32.
Baba
,
M. S.
,
Raju
,
A. V. S. R.
, and
Rao
,
M. B.
,
2018
, “
Heat Transfer Enhancement and Pressure Drop of Fe3O4–Water Nanofluid in a Double Tube Counter Flow Heat Exchanger With Internal Longitudinal Fins
,”
Case Stud. Therm. Eng.
,
12
, pp.
600
607
.10.1016/j.csite.2018.08.001
33.
Ghadiri
,
M.
,
Sardarabadi
,
M.
,
Pasandideh-fard
,
M.
, and
Moghadam
,
A. J.
,
2015
, “
Experimental Investigation of a PVT System Performance Using Nano Ferrofluids
,”
Energy Convers. Manage.
,
103
, pp.
468
476
.10.1016/j.enconman.2015.06.077
34.
Shahsavar
,
A.
,
Saghafian
,
M.
,
Salimpour
,
M. R.
, and
Shafii
,
M. B.
,
2016
, “
Experimental Investigation on Laminar Forced Convective Heat Transfer of Ferrofluid Loaded With Carbon Nanotubes Under Constant and Alternating Magnetic Fields
,”
Exp. Therm. Fluid Sci.
,
76
, pp.
1
11
.10.1016/j.expthermflusci.2016.03.010
35.
Kumar
,
N. T. R.
,
Bhramara
,
P.
,
Addis
,
B. M.
,
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2017
, “
Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4/Water Nanofluid Flow in a Double Pipe Heat Exchanger With Return Bend
,”
Int. Commun. Heat Mass Transf.
,
81
, pp.
155
163
.10.1016/j.icheatmasstransfer.2016.12.019
36.
Kumar
,
N. T. R.
,
Bhramara
,
P.
,
Sundar
,
L. S.
,
Singh
,
M. K.
, and
Sousa
,
A. C. M.
,
2017
, “
Heat Transfer, Friction Factor and Effectiveness of Fe3O4 Nanofluid Flow in an Inner Tube of Double Pipe U-Bend Heat Exchanger With and Without Longitudinal Strip Inserts
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
331
343
.10.1016/j.expthermflusci.2017.03.019
37.
Goharkhah
,
M.
,
Salarian
,
A.
,
Ashjaee
,
M.
, and
Shahabadi
,
M.
,
2015
, “
Convective Heat Transfer Characteristics of Magnetite Nanofluid Under the Influence of Constant and Alternating Magnetic Field
,”
Powder Technol.
,
274
, pp.
258
267
.10.1016/j.powtec.2015.01.031
38.
Mehrali
,
M.
,
Sadeghinezhad
,
E.
,
Akhiani
,
A. R.
,
Latibari
,
S. T.
,
Metselaar
,
H. S. C.
,
Kherbeet
,
A. S.
, and
Mehrali
,
M.
,
2017
, “
Heat Transfer and Entropy Generation Analysis of Hybrid Graphene/Fe3O4 Ferro-Nanofluid Flow Under the Influence of a Magnetic Field
,”
Powder Technol.
,
308
, pp.
149
157
.10.1016/j.powtec.2016.12.024
39.
Sadeghinezhad
,
E.
,
Mehrali
,
M.
,
Akhiani
,
A. R.
,
Latibari
,
S. T.
,
Dolatshahi-Pirouz
,
A.
,
Metselaar
,
H. S. C.
, and
Mehrali
,
M.
,
2017
, “
Experimental Study on Heat Transfer Augmentation of Graphene Based Ferrofluids in Presence of Magnetic Field
,”
Appl. Therm. Eng.
,
114
, pp.
415
427
.10.1016/j.applthermaleng.2016.11.199
40.
Amani
,
M.
,
Ameri
,
M.
, and
Kasaeian
,
A.
,
2018
, “
Hydrothermal Assessment of Ferrofluids in a Metal Foam Tube Under Lowfrequency Magnetic Field
,”
Int. J. Therm. Sci.
,
127
, pp.
242
51
.10.1016/j.ijthermalsci.2018.01.031
41.
Mei
,
S.
,
Qi
,
C.
,
Luo
,
T.
,
Zhai
,
X.
, and
Yan
,
Y.
,
2019
, “
Effects of Magnetic Field on Thermo-Hydraulic pe.rformance of Fe3O4-Water Nanofluids in a Corrugated Tube
,”
Int. J. Heat Mass Transf.
,
128
, pp.
24
45
.10.1016/j.ijheatmasstransfer.2018.08.071
42.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
43.
Kelidari
,
M.
, and
Moghadam
,
A. J.
,
2019
, “
Effects of Fe3O4/Water Nanofluid on the Efficiency of a Curved Pipe
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
4
), p.
041016
.10.1115/1.4044184
44.
Li
,
S.
,
Ji
,
W.
,
Zhao
,
C.
,
Zhang
,
H.
, and
Tao
,
W.
,
2019
, “
Effects of Magnetic Field on the Pool Boiling Heat Transfer of Water-Based α-Fe2O3 and γ-Fe2O3 Nanofluids
,”
Int. J. Heat Mass Transf.
,
128
, pp.
762
772
.10.1016/j.ijheatmasstransfer.2018.09.022
45.
Daviran
,
S.
,
Kasaeian
,
A.
,
Tahmooressi
,
H.
,
Rashidi
,
A.
,
Wen
,
D.
, and
Mahian
,
O.
,
2017
, “
Evaluation of Clustering Role Versus Brownian Motion Effect on the Heat Conduction in Nanofluids: A Novel Approach
,”
Int. J. Heat Mass Transf.
,
108
, pp.
822
829
.10.1016/j.ijheatmasstransfer.2016.12.071
46.
Ghasemi
,
S. E.
,
2017
, “
Thermophoresis and Brownian Motion Effects on Peristaltic Nanofluid Flow for Drug Delivery Applications
,”
J. Mol. Liq.
,
238
, pp.
115
121
.10.1016/j.molliq.2017.04.067
47.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids Submicron Metallic Oxide Particles
,”
Exp. Heat Transf. Int.
,
11
(
2
), pp.
151
170
.10.1080/08916159808946559
48.
Wasp
,
E.
,
Kenny
,
J.
, and
Gandhi
,
R.
,
1977
, “
Solid-Liquid Flow Slurry Pipeline Transportation
,”
Ser. Bulk Mater. Handling
,
1
, p.
56
49.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
1996
,
Introduction to Heat Transfer
,
Wiley
,
New York
.
50.
Kline
,
S.
, and
McClintock
,
F.
,
1953
, “
Describing Uncertainties in Single-Sample Expriments
,”
Mech. Eng.
,
75
, pp.
3
8
.
51.
Shen
,
L. P.
,
Wang
,
H.
,
Dong
,
M.
,
Ma
,
Z. C.
, and
Wang
,
H. B.
,
2012
, “
Solvothermal Synthesis and Electrical Conductivity Model for the Zinc Oxide-Insulated Oil Nanofluid
,”
Phys. Lett. A
,
376
(
10–11
), p.
1053
.10.1016/j.physleta.2012.02.006
52.
Dong
,
M.
,
Shen
,
L. P.
,
Wang
,
H.
,
Wang
,
H. B.
, and
Miao
,
J.
,
2013
, “
Investigation on the Electrical Conductivity of Transformer Oil-Based AlN Nanofluid
,”
J. Nanomater
,
2013
, p.
842963
.10.1155/2013/842963
53.
Davidson
,
P. A.
,
2001
,
An Introduction to Magnetohydrodynamics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.