Abstract

Endwall film cooling is a significant cooling method to protect the endwall region and the junction region of endwall and a turbine vane, where usually a relatively high temperature load exists. This work aims to find the optimized arrangement of film cooling holes on the endwall and improve the film cooling in some difficult regions on the endwall, such as pressure side-endwall junction region. Several ideas for film cooling hole arrangement design are proposed, based on the pressure coefficient distribution, the streamline distribution, and the heat transfer coefficient (HTC) distribution, respectively. Four specified designs are built and compared. The results are obtained by numerical calculations with a well-validated turbulence model, the k–ω shear stress transport (SST) model. From this work, the designs based on the pressure coefficient distribution (designs 1 and 2) force the flow from the pressure side to the suction side (SS), especially in design 2, which adopts compound angle holes. The designs based on pressure coefficients have benefit in the cooling of the SS but give worse coolant coverage on the pressure side. In addition, designs 1 and 2 have little influence on the original pressure field. The design based on the streamline distributions (design 3) has larger coolant coverage on the endwall and provides good coolant coverage on the endwall and pressure side junction region. The design based on the HTC distribution provides large overall film cooling effectiveness on both the pressure side and the SS. More film cooling holes are placed on the high temperature regions, which is more effective in practice.

References

References
1.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Advances in Heat Transfer
,
Elsevier
,
New York
, pp.
321
379.
2.
Ito
,
S.
,
Goldstein
,
R.
, and
Eckert
,
E.
,
1978
, “
Film Cooling of a Gas Turbine Blade
,”
ASME J. Eng. Power
,
100
(
3
), pp.
476
481
.10.1115/1.3446382
3.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
4.
Sundaram
,
N.
, and
Thole
,
K.
,
2008
, “
Bump and Trench Modifications to Film-Cooling Holes at the Vane-Endwall Junction
,”
ASME J. Turbomach.
,
130
(
4
), p.
041013
.10.1115/1.2812933
5.
Sundaram
,
N.
, and
Thole
,
K.
,
2009
, “
Film-Cooling Flowfields With Trenched Holes on an Endwall
,”
ASME J. Turbomach.
,
131
(
4
), p.
041007
.10.1115/1.3068316
6.
Ekkad
,
S.
, and
Han
,
J. C.
,
2013
, “
A Review of Hole Geometry and Coolant Density Effect on Film Cooling
,”
ASME
Paper No. HT2013-17250.
7.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
8.
Han
,
J. C.
, and
Ekkad
,
S.
,
2001
, “
Recent Development in Turbine Blade Film Cooling
,”
Int. J. Rotating Mach.
,
7
(
1
), pp.
21
40
.10.1155/S1023621X01000033
9.
Ligrani
,
P.
,
Wigle
,
J.
, and
Jackson
,
S.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations—Part 2: Results Downstream of a Single Row of Holes With 6d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
353
362
.10.1115/1.2911407
10.
Goldstein
,
R.
, and
Jin
,
P.
,
2000
, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME
Paper No. 2000-GT-248.
11.
Sinha
,
A.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
.10.1115/1.2927894
12.
Haas
,
W.
,
Rodi
,
W.
, and
Schönung
,
B.
,
1992
, “
The Influence of Density Difference Between Hot and Coolant Gas on Film Cooling by a Row of Holes: Predictions and Experiments
,”
ASME J. Turbomach.
,
114
(
4
), pp.
747
755
.10.1115/1.2928028
13.
Chen
,
A. F.
,
Li
,
S. J.
, and
Han
,
J. C.
,
2015
, “
Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique
,”
J. Thermophys. Heat Transfer
,
29
(
4
), pp.
775
784
.10.2514/1.T4518
14.
Jabbari
,
M.
, and
Goldstein
,
R.
,
1978
, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Power
,
100
(
2
), pp.
303
307
.10.1115/1.3446350
15.
Sinha
,
A.
,
Bogard
,
D.
, and
Crawford
,
M.
,
1990
, “
Gas Turbine Film Cooling: Flowfield Due to a Second Row of Holes
,”
ASME
Paper No. 90-GT-044. 10.1115/90-GT-044
16.
Ligrani
,
P.
,
Wigle
,
J.
,
Ciriello
,
S.
, and
Jackson
,
S.
,
1994
, “
Film-Cooling From Holes With Compound Angle Orientations—Part 1: Results Downstream of Two Staggered Rows of Holes With 3d Spanwise Spacing
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
341
352
.10.1115/1.2911406
17.
Dittmar
,
J.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Assessment of Various Film Cooling Configurations Including Shaped and Compound Angle Holes Based on Large Scale Experiments
,”
ASME
Paper No. 2002-GT-30176.
18.
Wang
,
N.
,
Zhang
,
M.
,
Shiau
,
C. C.
, and
Han
,
J. C.
,
2018
, “
Film Cooling Effectiveness From Two-Row of Compound Angled Cylindrical Holes Using PSP Technique
,”
ASME
Paper No. GT2018-75167. 10.1115/GT2018-75167
19.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
, and
Dees
,
J. E.
,
2017
, “
Adiabatic Film Cooling Effectiveness Measurements Throughout Multirow Film Cooling Arrays
,”
ASME J. Turbomach.
,
139
(
10
), p.
101008
.10.1115/1.4035520
20.
Ghosh
,
K.
, and
Goldstein
,
R. J.
,
2011
, “
Effect of Inlet Skew on Heat/Mass Transfer From a Simulated Turbine Blade
,”
ASME
Paper No. 2011-GT-46543.
21.
Shiau
,
C. C.
,
Sahin
,
I.
,
Wang
,
N.
,
Han
,
J.-C.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Turbine Vane Endwall Film Cooling Comparison From Five Film-Hole Design Patterns and Three Upstream Leakage Injection Angles
,”
ASME
Paper No. GT2018-75272. 10.1115/GT2018-75272
22.
Granser
,
D.
, and
Schulenberg
,
T.
,
1990
, “
Prediction and Measurement of Film Cooling Effectiveness for a First-Stage Turbine Vane Shroud
,”
ASME
Paper No. 90-GT-095. 10.1115/90-GT-095
23.
Harasgama
,
S.
, and
Burton
,
C.
,
1992
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade—Part 1: Experimental Technique and Results
,”
ASME J. Turbomach.
,
114
(
4
), pp.
734
740
.10.1115/1.2928026
24.
Harasgama
,
S.
, and
Burton
,
C.
,
1991
, “
Film Cooling Research on the Endwall of a Turbine Nozzle Guide Vane in a Short Duration Annular Cascade—Part 2: Analysis and Correlation of Results
,”
ASME
Paper No. 91-GT-253. 10.1115/91-GT-253
25.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1996
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME
Paper No. 96-GT-208. 10.1115/96-GT-208
26.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1998
, “
The Design of an Improved Endwall Film-Cooling Configuration
,”
ASME
Paper No. 98-GT-483.
27.
Friedrichs
,
S.
,
Hodson
,
H.
, and
Dawes
,
W.
,
1995
, “
Distribution of Film-Cooling Effectiveness on a Turbine Endwall Measured Using the Ammonia and Diazo Technique
,”
ASME
Paper No. 95-GT-001. 10.1115/95-GT-001
28.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
,
2001
, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure Sensitive Paint
,”
ASME
Paper No. 2001-GT-147.
29.
Shiau
,
C. C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2016
, “
Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique
,”
ASME J. Turbomach.
,
138
(
5
), p.
051002
.10.1115/1.4032166
30.
Oke
,
R. A.
,
Simon
,
T. W.
,
Burd
,
S. W.
, and
Vahlberg
,
R.
,
2000
, “
Measurements in a Turbine Cascade Over a Contoured Endwall: Discrete Hole Injection of Bleed Flow
,”
ASME
Paper No. 2000-GT-0214. 10.1115/2000-GT-0214
31.
Oke
,
R.
,
Simon
,
T.
,
Shih
,
T.
,
Zhu
,
B.
,
Lin
,
Y. L.
, and
Chyu
,
M.
,
2001
, “
Measurements Over a Film-Cooled, Contoured Endwall With Various Coolant Injection Rates
,”
ASME
Paper No. 2001-GT-0140. 10.1115/2001-GT-0140
32.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Effects of Slot Bleed Injection Over a Contoured Endwall on Nozzle Guide Vane Cooling Performance—Part I: Flow Field Measurements
,”
ASME
Paper No. 2000-GT-0199. 10.1115/2000-GT-0199
33.
Roy
,
R.
,
Squires
,
K.
,
Gerendas
,
M.
,
Song
,
S.
,
Howe
,
W.
, and
Ansari
,
A.
,
2000
, “
Flow and Heat Transfer at the Hub Endwall of Inlet Vane Passages—Experiments and Simulations
,”
ASME
Paper No. 2000-GT-0198. 10.1115/2000-GT-0198
34.
Knost
,
D.
, and
Thole
,
K.
,
2004
, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
ASME
Paper No. GT2004-53326. 10.1115/GT2004-53326
35.
Zhang
,
L.
, and
Moon
,
H. K.
,
2003
, “
Turbine Nozzle Endwall Inlet Film Cooling: The Effect of a Back-Facing Step
,”
ASME
Paper No. GT2003-38319. 10.1115/GT2003-38319
36.
Knost
,
D. G.
,
2003
, “
Predictions and Measurements of Film-Cooling on the Endwall of a First Stage Vane
,” M.S. thesis, Virginia Tech, Blacksburg, VA, USA.
37.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K.
,
1999
, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
,
121
(
3
), pp.
558
568
.10.1115/1.2841351
You do not currently have access to this content.