Abstract

Microstructure modification of thick anode is an effective way to enhance cell performance of the anode-supported planar solid oxide fuel cells (SOFCs). In this work, the influence of multilayer anode microstructure with gradient porosity on cell mass transfer and electrical performance is numerically investigated. The coupled phenomena of fluid flow, multicomponent mass transfer, charge transport, and electrochemical reactions of SOFC, in three-dimensions (3D), are simulated by using the finite element computational fluid dynamics approach. Quantitative analyses of hydrogen concentration and anodic overpotentials are conducted to better understand the effect mechanism of the gradient porosity anode on the cell performance. The effect of gradient porosity distribution on the cell performance is also systematically discussed. It is found that the gradient porosity anode can significantly enhance the cell mass transfer performance to reduce the anodic concentration overpotential. The combined effects of activation, concentration, and ohmic overpotentials can effectively improve the cell electrical performance. For the cases studied, porosity gradient and porosity of anode functional layer 2 (AFL2) both range from 0.1 to 0.3. Results indicate that increasing the porosity gradient or porosity of AFL2 can enhance the cell mass transfer performance. As the porosity of AFL2 is higher than 0.2, the gradient porosity anode design is beneficial to improve the cell electrical performance.

References

References
1.
Prakash
,
B. S.
,
Kumar
,
S. S.
, and
Aruna
,
S. T.
,
2014
, “
Properties and Development of Ni/YSZ as an Anode Material in Solid Oxide Fuel Cell: A Review
,”
Renew. Sust. Energy Rev.
,
36
, pp.
149
179
.10.1016/j.rser.2014.04.043
2.
Hajimolana
,
S. A.
,
Hussain
,
M. A.
,
Daud
,
W. M. A. W.
,
Soroush
,
M.
, and
Shamiri
,
A.
,
2011
, “
Mathematical Modeling of Solid Oxide Fuel Cells: A Review
,”
Renew. Sust. Energy Rev.
,
15
(
4
), pp.
1893
1917
.10.1016/j.rser.2010.12.011
3.
Virkar
,
A. V.
,
Chen
,
J.
,
Tanner
,
C. W.
, and
Kim
,
J. W.
,
2000
, “
The Role of Electrode Microstructure on Activation and Concentration Polarizations in Solid Oxide Fuel Cells
,”
Solid State Ionics
,
131
(
1–2
), pp.
189
198
.10.1016/S0167-2738(00)00633-0
4.
Yuan
,
J. L.
, and
Sundén
,
B.
,
2005
, “
Analysis of Intermediate Temperature Solid Oxide Fuel Cell Transport Processes and Performance
,”
ASME J. Heat Transfer
,
127
(
12
), pp.
1380
1390
.10.1115/1.2098847
5.
Haanappel
,
V. A. C.
,
Mertens
,
J.
,
Rutenbeck
,
D.
,
Tropartz
,
C.
,
Herzhof
,
W.
,
Sebold
,
D.
, and
Tietz
,
F.
,
2005
, “
Optimisation of Processing and Microstructural Parameters of LSM Cathodes to Improve the Electrochemical Performance of Anode-Supported SOFCs
,”
J. Power Sources
,
141
(
2
), pp.
216
226
.10.1016/j.jpowsour.2004.09.016
6.
Chen
,
Q. Y.
,
Wang
,
Q. W.
,
Zhang
,
J.
, and
Yuan
,
J. L.
,
2011
, “
Effect of Bi-Layer Interconnector Design on Mass Transfer Performance in Porous Anode of Solid Oxide Fuel Cells
,”
Int. J. Heat Mass Transfer
,
54
(
9–10
), pp.
1994
2003
.10.1016/j.ijheatmasstransfer.2011.01.003
7.
Moon
,
H.
,
Kim
,
S. D.
,
Park
,
E. W.
,
Hyun
,
S. H.
, and
Kim
,
H. S.
,
2008
, “
Characteristics of SOFC Single Cells With Anode Active Layer Via Tape Casting and Co-Firing
,”
Int. J. Hydrogen Energy
,
33
(
11
), pp.
2826
2833
.10.1016/j.ijhydene.2008.03.024
8.
Lee
,
S.
,
Park
,
I.
,
Lee
,
H.
, and
Shin
,
D.
,
2014
, “
Continuously Gradient Anode Functional Layer for BCZY Based Proton-Conducting Fuel Cells
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14342
14348
.10.1016/j.ijhydene.2014.03.135
9.
Müller
,
A. C.
,
Herbstritt
,
D.
, and
Ivers-Tiffée
,
E.
,
2002
, “
Development of a Multilayer Anode for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
152
, pp.
537
542
.10.1016/S0167-2738(02)00357-0
10.
Kong
,
J. R.
,
Sun
,
K. N.
,
Zhou
,
D. R.
,
Zhang
,
N. Q.
,
Mu
,
J.
, and
Qiao
,
J. S.
,
2007
, “
Ni-YSZ Gradient Anodes for Anode-Supported SOFCs
,”
J. Power Sources
,
166
(
2
), pp.
337
342
.10.1016/j.jpowsour.2006.12.042
11.
Jin
,
C.
,
Mao
,
Y. C.
,
Zhang
,
N. Q.
, and
Sun
,
K. N.
,
2015
, “
Fabrication and Characterization of Ni-SSZ Gradient Anodes/SSZ Electrolyte for Anode-Supported SOFCs by Tape Casting and Co-Sintering Technique
,”
Int. J. Hydrogen Energy
,
40
(
26
), pp.
8433
8441
.10.1016/j.ijhydene.2015.04.088
12.
An
,
C. M.
,
Song
,
J. H.
,
Kang
,
I.
, and
Sammes
,
N.
,
2010
, “
The Effect of Porosity Gradient in a Nickel/Yttria Stabilized Zirconia Anode for an Anode-Supported Planar Solid Oxide Fuel Cell
,”
J. Power Sources
,
195
(
3
), pp.
821
824
.10.1016/j.jpowsour.2009.08.043
13.
Sukeshini
,
M.
,
Meisenkothen
,
F.
,
Gardner
,
P.
, and
Reitz
,
T. L.
,
2013
, “
Aerosol Jet® Printing of Functionally Graded SOFC Anode Interlayer and Microstructural Investigation by Low Voltage Scanning Electron Microscopy
,”
J. Power Sources
,
224
, pp.
295
303
.10.1016/j.jpowsour.2012.09.094
14.
Beltran-Lopez
,
J. F.
,
Laguna-Bercero
,
M. A.
,
Gurauskis
,
J.
, and
Peña
,
J. I.
,
2014
, “
Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination
,”
Electrocatalysis
,
5
(
3
), pp.
273
278
.10.1007/s12678-014-0193-2
15.
Hao
,
X. M.
,
Han
,
D. D.
,
Wang
,
J. W.
,
Liu
,
Y. J.
,
Rooney
,
D.
,
Sun
,
W.
,
Qiao
,
J. S.
,
Wang
,
Z. H.
, and
Sun
,
K. N.
,
2015
, “
Co-Tape Casting Fabrication, Field Assistant Sintering and Evaluation of a Coke Resistant La0.2Sr 0.7TiO3-Ni/YSZ Functional Gradient Anode Supported Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
37
), pp.
12790
12797
.10.1016/j.ijhydene.2015.07.126
16.
Ni
,
M.
,
Leung
,
M. K.
, and
Leung
,
D. Y.
,
2007
, “
Micro-Scale Modelling of Solid Oxide Fuel Cells With Micro-Structurally Graded Electrodes
,”
J. Power Sources
,
168
(
2
), pp.
369
378
.10.1016/j.jpowsour.2007.03.005
17.
Shi
,
J. X.
, and
Xue
,
X. J.
,
2010
, “
CFD Analysis of a Symmetrical Planar SOFC With Heterogeneous Electrode Properties
,”
Electrochim. Acta
,
55
(
18
), pp.
5263
5273
.10.1016/j.electacta.2010.04.060
18.
Andersson
,
M.
,
Yuan
,
J. L.
, and
Sundén
,
B.
,
2013
, “
Grading the Amount of Electrochemical Active Sites Along the Main Flow Direction of an SOFC
,”
J. Electrochem. Soc.
,
160
(
1
), pp.
F1
F12
.10.1149/2.026301jes
19.
Wang
,
C.
,
2015
, “
Microscale Correlations Adoption in Solid Oxide Fuel Cell
,”
ASME J. Fuel Cell Sci. Technol.
,
12
(
4
), p.
041006
.10.1115/1.4031153
20.
Wang
,
C.
,
2016
, “
A Computational Analysis of Functionally Graded Anode in Solid Oxide Fuel Cell by Involving the Correlations of Microstructural Parameters
,”
Energies
,
9
(
6
), p.
408
.10.3390/en9060408
21.
Jung
,
H. Y.
,
Kim
,
W. S.
,
Choi
,
S. H.
,
Kim
,
H. C.
,
Kim
,
J.
,
Lee
,
H. W.
, and
Lee
,
J. H.
,
2006
, “
Effect of Cathode Current-Collecting Layer on Unit-Cell Performance of Anode-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
155
(
2
), pp.
145
151
.10.1016/j.jpowsour.2005.05.015
22.
Cordiner
,
S.
,
Mariani
,
A.
, and
Mulone
,
V.
,
2010
, “
CFD-Based Design of Microtubular Solid Oxide Fuel Cells
,”
ASME J. Heat Transfer
,
132
(
6
), p.
062801
.10.1115/1.4000709
23.
Tao
,
W. Q.
,
Min
,
C. H.
,
Liu
,
X. L.
,
He
,
Y. L.
,
Yin
,
B. H.
, and
Jiang
,
W.
,
2006
, “
Parameter Sensitivity Examination and Discussion of PEM Fuel Cell Simulation Model Validation: Part I—Current Status of Modeling Research and Model Development
,”
J. Power Sources
,
160
(
1
), pp.
359
573
.10.1016/j.jpowsour.2006.01.078
24.
Shi
,
Y. X.
,
Cai
,
N. S.
, and
Li
,
C.
,
2007
, “
Numerical Modeling of an Anode-Supported SOFC Button Cell Considering Anodic Surface Diffusion
,”
J. Power Sources
,
164
(
2
), pp.
639
648
.10.1016/j.jpowsour.2006.10.091
25.
Todd
,
B.
, and
Young
,
J. B.
,
2002
, “
Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling
,”
J. Power Sources
,
110
(
1
), pp.
186
200
.10.1016/S0378-7753(02)00277-X
26.
Nield
,
D. A.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Media
, 4th ed.,
Springer Science & Business Media
,
New York
.
27.
Andersson
,
M.
,
Paradis
,
H.
,
Yuan
,
J.
, and
Sundén
,
B.
,
2011
, “
Modeling Analysis of Different Renewable Fuels in an Anode Supported SOFC
,”
ASME J. Fuel Cell Sci. Technol.
,
8
(
3
), p.
031013
.10.1115/1.4002618
28.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
,
1966
, “
A New Method for Prediction Coefficients of Binary Gas-Phase Diffusion
,”
Ind. Eng. Chem. Res.
,
58
(
5
), pp.
18
27
.10.1021/ie50677a007
29.
Bagotsky
,
V. S.
,
2005
,
Fundamentals of Electrochemistry
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
30.
Ho
,
T. X.
,
Kosinski
,
P.
,
Hoffmann
,
A. C.
, and
Vik
,
A.
,
2008
, “
Numerical Modeling of Solid Oxide Fuel Cells
,”
Chem. Eng. Sci.
,
63
(
21
), pp.
5356
5365
.10.1016/j.ces.2008.07.021
31.
Ho
,
T. X.
,
Kosinski
,
P.
,
Hoffmann
,
A. C.
, and
Vik
,
A.
,
2009
, “
Numerical Analysis of a Planar Anode-Supported SOFC With Composite Electrodes
,”
Int. J. Hydrogen Energy
,
34
(
8
), pp.
3488
3499
.10.1016/j.ijhydene.2009.02.016
32.
Jeon
,
D. H.
,
2009
, “
A Comprehensive CFD Model of Anode-Supported Solid Oxide Fuel Cells
,”
Electrochim. Acta
,
54
(
10
), pp.
2727
2736
.10.1016/j.electacta.2008.11.048
33.
Andreassi
,
L.
,
Rubeo
,
G.
,
Ubertini
,
S.
,
Lunghi
,
P.
, and
Bove
,
R.
,
2007
, “
Experimental and Numerical Analysis of a Radial Flow Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4559
4574
.10.1016/j.ijhydene.2007.07.047
34.
Costamagna
,
P.
,
Costa
,
P.
, and
Antonucci
,
V.
,
1998
, “
Micro-Modelling of Solid Oxide Fuel Cell Electrodes
,”
Electrochim. Acta
,
43
(
3–4
), pp.
375
394
.10.1016/S0013-4686(97)00063-7
35.
Hussain
,
M. M.
,
Li
,
X.
, and
Dincer
,
I.
,
2009
, “
A General Electrolyte-Electrode-Assembly Model for the Performance Characteristics of Planar Anode-Supported Solid Oxide Fuel Cells
,”
J. Power Sources
,
189
(
2
), pp.
916
928
.10.1016/j.jpowsour.2008.12.121
36.
Zeng
,
M.
,
Yuan
,
J. L.
,
Zhang
,
J.
,
Sundén
,
B.
, and
Wang
,
Q. W.
,
2012
, “
Investigation of Thermal Radiation Effects on Solid Oxide Fuel Cell Performance by a Comprehensive Model
,”
J. Power Sources
,
206
, pp.
185
196
.10.1016/j.jpowsour.2012.01.130
You do not currently have access to this content.