Abstract

The growth and pinch-off dynamics of an evaporating pendant drop have been studied through direct numerical simulations. A coupled level-set and volume-of-fluid method is utilized to perform the simulations in an axisymmetric coordinate system. The dynamics of an evaporating pendant drop depends on the combined effects of buoyancy, capillary force, and the evaporation rate at the interface. The volumetric growth-rate of the drop decreases with the increase in degree of superheat of the surrounding medium, thereby enhances the pinch-off time. However, the departure diameter decreases with an increase in superheat. Limiting length and neck radius are not significantly affected due to the variation in degree of superheat. The heat transfer characteristics at different stages during the growth of a pendant drop have been analyzed for various values of superheat.

References

References
1.
Tate
,
T.
,
1864
, “
On the Magnitude of a Drop of Liquid Formed Under Different Circumstances
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
27
(
181
), pp.
176
180
.10.1080/14786446408643645
2.
Rayleigh
,
L.
,
1899
, “
XXXVI: Investigations in Capillarity:—The Size of Drops.—The Liberation of Gas From Supersaturated Solutions.—Colliding Jets.—The Tension of Contaminated Water-Surfaces
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
,
48
(
293
), pp.
321
337
.10.1080/14786449908621342
3.
Harkins
,
W. D.
, and
Brown
,
F. E.
,
1919
, “
The Detrrmination of Surface Tension (Free Surface Energy), and the Weight of Falling Drops: The Surface Tension of Water and Benzine by the Capillary Height Method
,”
J. Am. Chem. Soc.
,
41
(
4
), pp.
499
524
.10.1021/ja01461a003
4.
Bogy
,
D. B.
,
1979
, “
Drop Formation in a Circular Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
207
228
.10.1146/annurev.fl.11.010179.001231
5.
Wilson
,
S. D. R.
,
1988
, “
The Slow Dripping of a Viscous Fluid
,”
J. Fluid Mech.
,
190
, pp.
561
570
.10.1017/S0022112088001454
6.
Eggers
,
J.
, and
Dupont
,
T. F.
,
1994
, “
Drop Formation in a One-Dimensional Approximation of the Navierstokes Equation
,”
J. Fluid Mech.
,
262
, pp.
205
221
.10.1017/S0022112094000480
7.
Schulkes
,
R. M. S. M.
,
1994
, “
The Evolution and Bifurcation of a Pendant Drop
,”
J. Fluid Mech.
,
278
, pp.
83
100
.10.1017/S0022112094003629
8.
Chen
,
X. D.
, and
Lin
,
S. X. Q.
,
2005
, “
Air Drying of Milk Droplet Under Constant and Time-Dependent Conditions
,”
AIChE J.
,
51
(
6
), pp.
1790
1799
.10.1002/aic.10449
9.
Heideger
,
W. J.
, and
Wright
,
M. W.
,
1986
, “
Liquid Extraction During Drop Formation: Effect of Formation Time
,”
AIChE J.
,
32
(
8
), pp.
1372
1376
.10.1002/aic.690320815
10.
Utada
,
A. S.
,
Lorenceau
,
E.
,
Link
,
D. R.
,
Kaplan
,
P. D.
,
Stone
,
H. A.
, and
Weitz
,
D. A.
,
2005
, “
Monodisperse Double Emulsions Generated From a Microcapillary Device
,”
Science
,
308
(
5721
), pp.
537
541
.10.1126/science.1109164
11.
Eggers
,
J.
, and
Villermaux
,
E.
,
2008
, “
Physics of Liquid Jets
,”
Rep. Prog. Phys.
,
71
(
3
), p.
036601
.10.1088/0034-4885/71/3/036601
12.
Reitz
,
R. D.
, and
Beale
,
J. C.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.10.1615/AtomizSpr.v9.i6.40
13.
Shield
,
T. W.
,
Bogy
,
D. B.
, and
Talke
,
F. E.
,
1987
, “
Drop Formation by Dod Ink-Jet Nozzles: A Comparison of Experiment and Numerical Simulation
,”
IBM J. Res. Develop.
,
31
(
1
), pp.
96
110
.10.1147/rd.311.0096
14.
Le
,
H. P.
,
1998
, “
Progress and Trends in Ink-Jet Printing Technology
,”
J. Imaging Sci. Technol.
,
42
, pp.
49
62
.https://www.imaging.org/site/PDFS/Papers/1999/RP-0-92/1975.pdf
15.
Basaran
,
O. A.
,
2002
, “
Small-Scale Free Surface Flows With Breakup: Drop Formation and Emerging Applications
,”
AIChE J.
,
48
(
9
), pp.
1842
1848
.10.1002/aic.690480902
16.
Wilson
,
W. C.
, and
Boland
,
T.
,
2003
, “
Cell and Organ Printing 1: Protein and Cell Printers
,”
Anatomical Rec. Part A: Discoveries Mol., Cellular, Evol. Biol.
,
272A
(
2
), pp.
491
496
.10.1002/ar.a.10057
17.
Zhang
,
X.
, and
Basaran
,
O. A.
,
1995
, “
An Experimental Study of Dynamics of Drop Formation
,”
Phys. Fluids
,
7
(
6
), pp.
1184
1203
.10.1063/1.868577
18.
Zhang
,
D. F.
, and
Stone
,
H. A.
,
1997
, “
Drop Formation in Viscous Flows at a Vertical Capillary Tube
,”
Phys. Fluids
,
9
(
8
), pp.
2234
2242
.10.1063/1.869346
19.
Ambravaneswaran
,
B.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
,
2000
, “
Theoretical Analysis of a Dripping Faucet
,”
Phys. Rev. Lett.
,
85
(
25
), pp.
5332
5335
.10.1103/PhysRevLett.85.5332
20.
Chen
,
A. U.
,
Notz
,
P. K.
, and
Basaran
,
O. A.
,
2002
, “
Computational and Experimental Analysis of Pinch-Off and Scaling
,”
Phys. Rev. Lett.
,
88
(
17
), p.
174501
.10.1103/PhysRevLett.88.174501
21.
Subramani
,
H. J.
,
Yeoh
,
H. K.
,
Suryo
,
R.
,
Xu
,
Q.
,
Ambravaneswaran
,
B.
, and
Basaran
,
O. A.
,
2006
, “
Simplicity and Complexity in a Dripping Faucet
,”
Phys. Fluids
,
18
(
3
), p.
032106
.10.1063/1.2185111
22.
Castrejón-Pita
,
J. R.
,
Castrejón-Pita
,
A. A.
,
Thete
,
S. S.
,
Sambath
,
K.
,
Hutchings
,
I. M.
,
Hinch
,
J.
,
Lister
,
J. R.
, and
Basaran
,
O. A.
,
2015
, “
Plethora of Transitions During Breakup of Liquid Filaments
,”
Proc. Natl. Acad. Sci.
,
112
(
15
), pp.
4582
4587
.10.1073/pnas.1418541112
23.
Tomotika
,
S.
,
1935
, “
On the Instability of a Cylindrical Thread of a Viscous Liquid Surrounded by Another Viscous Fluid
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
150
(
870
), pp.
322
337
.10.1098/rspa.1935.0104
24.
Squire
,
H. B.
,
1953
, “
Investigation of the Instability of a Moving Liquid Film
,”
Br. J. Appl. Phys.
,
4
(
6
), p.
167
.10.1088/0508-3443/4/6/302
25.
Sterling
,
A. M.
, and
Sleicher
,
C. A.
,
1975
, “
The Instability of Capillary Jets
,”
J. Fluid Mech.
,
68
(
3
), pp.
477
495
.10.1017/S0022112075001772
26.
Goedde
,
E. F.
, and
Yuen
,
M. C.
,
1970
, “
Experiments on Liquid Jet Instability
,”
J. Fluid Mech.
,
40
(
3
), pp.
495
511
.10.1017/S0022112070000289
27.
Richards
,
J. R.
,
Lenhoff
,
A. M.
, and
Beris
,
A. N.
,
1994
, “
Dynamic Breakup of Liquidliquid Jets
,”
Phys. Fluids
,
6
(
8
), pp.
2640
2655
.10.1063/1.868154
28.
Pan
,
Y.
, and
Suga
,
K.
,
2006
, “
A Numerical Study on the Breakup Process of Laminar Liquid Jets Into a Gas
,”
Phys. Fluids
,
18
(
5
), p.
052101
.10.1063/1.2194936
29.
Clanet
,
C.
, and
Lasheras
,
J. C.
,
1999
, “
Transition From Dripping to Jetting
,”
J. Fluid Mech.
,
383
, pp.
307
326
.10.1017/S0022112098004066
30.
Ambravaneswaran
,
B.
,
Subramani
,
H. J.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
,
2004
, “
Dripping-Jetting Transitions in a Dripping Faucet
,”
Phys. Rev. Lett.
,
93
(
3
), p.
034501
.10.1103/PhysRevLett.93.034501
31.
Utada
,
A. S.
,
Fernandez-Nieves
,
A.
,
Stone
,
H. A.
, and
Weitz
,
D. A.
,
2007
, “
Dripping to Jetting Transitions in Coflowing Liquid Streams
,”
Phys. Rev. Lett.
,
99
(
9
), p.
094502
.10.1103/PhysRevLett.99.094502
32.
Chakraborty
,
I.
,
Rubio-Rubio
,
M.
,
Sevilla
,
A.
, and
Gordillo
,
J.
,
2016
, “
Numerical Simulation of Axisymmetric Drop Formation Using a Coupled Level Set and Volume of Fluid Method
,”
Int. J. Multiphase Flow
,
84
, pp.
54
65
.10.1016/j.ijmultiphaseflow.2016.04.002
33.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
34.
Shin
,
D. H.
,
Lee
,
S. H.
,
Jung
,
J.-Y.
, and
Yoo
,
J. Y.
,
2009
, “
Evaporating Characteristics of Sessile Droplet on Hydrophobic and Hydrophilic Surfaces
,”
Microelectron. Eng.
,
86
(
4–6
), pp.
1350
1353
.10.1016/j.mee.2009.01.026
35.
Semenov
,
S.
,
Trybala
,
A.
,
Rubio
,
R. G.
,
Kovalchuk
,
N.
,
Starov
,
V.
, and
Velarde
,
M. G.
,
2014
, “
Simultaneous Spreading and Evaporation: Recent Developments
,”
Adv. Colloid Interface Sci.
,
206
, pp.
382
398
.10.1016/j.cis.2013.08.006
36.
Takata
,
Y.
,
Hidaka
,
S.
,
Yamashita
,
A.
, and
Yamamoto
,
H.
,
2004
, “
Evaporation of Water Drop on a Plasma-Irradiated Hydrophilic Surface
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
320
328
.10.1016/j.ijheatfluidflow.2003.11.008
37.
Sandu
,
I.
, and
Fleaca
,
C. T.
,
2011
, “
The Influence of Gravity on the Distribution of the Deposit Formed Onto a Substrate by Sessile, Hanging, and Sandwiched Hanging Drop Evaporation
,”
J. Colloid Interface Sci.
,
358
(
2
), pp.
621
625
.10.1016/j.jcis.2011.03.052
38.
Wohak
,
M.
, and
Beer
,
H.
,
1998
, “
Numerical Simulation of Direct-Contact Evaporation of a Drop Rising in a Hot, Less Volatile Immiscible Liquid of Higher Densitypossibilities and Limits of the Sola-Vof/Csf Algorithm
,”
Numer. Heat Transfer, Part A Appl.
,
33
(
6
), pp.
561
582
.10.1080/10407789808913955
39.
Shimizu
,
Y.
, and
Mori
,
Y. H.
,
1988
, “
Evaporation of Single Liquid Drops in an Immiscible Liquid at Elevated Pressures: Experimental Study With n-Pentane and r 113 Drops in Water
,”
Int. J. Heat Mass Transfer
,
31
(
9
), pp.
1843
1851
.10.1016/0017-9310(88)90198-6
40.
Battya
,
P.
,
Raghavan
,
V. R.
, and
Seetharamu
,
K.
,
1984
, “
Parametric Studies on Direct Contact Evaporation of a Drop in an Immiscible Liquid
,”
Int. J. Heat Mass Transfer
,
27
(
2
), pp.
263
272
.10.1016/0017-9310(84)90217-5
41.
Haji
,
M.
, and
Chow
,
L.
,
1988
, “
Experimental Measurement of Water Evaporation Rates Into Air and Superheated Steam
,”
ASME J. Heat Transfer
,
110
(
1
), pp.
237
242
.10.1115/1.3250457
42.
Lee
,
K.
, and
Ryley
,
D.
,
1968
, “
The Evaporation of Water Droplets in Superheated Steam
,”
ASME J. Heat Transfer
,
90
(
4
), pp.
445
451
.10.1115/1.3597540
43.
Deka
,
H.
,
Tsai
,
P.-H.
,
Biswas
,
G.
,
Dalal
,
A.
,
Ray
,
B.
, and
Wang
,
A.-B.
,
2019
, “
Dynamics of Formation and Oscillation of Non-Spherical Drops
,”
Chem. Eng. Sci.
,
201
, pp.
413
423
.10.1016/j.ces.2019.03.008
44.
Agarwal
,
D. K.
,
Welch
,
S. W. J.
,
Biswas
,
G.
, and
Durst
,
F.
,
2004
, “
Planar Simulation of Bubble Growth in Film Boiling in Near-Critical Water Using a Variant of the VOF Method
,”
ASME J. Heat Transfer.
,
126
(
3
), pp.
329
338
.10.1115/1.1737779
45.
Tomar
,
G.
,
Biswas
,
G.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2005
, “
Numerical Simulation of Bubble Growth in Film Boiling Using a Coupled Level-Set and Volume-of-Fluid Method
,”
Phys. Fluids
,
17
(
11
), p.
112103
.10.1063/1.2136357
46.
Pandey
,
V.
,
Biswas
,
G.
, and
Dalal
,
A.
,
2016
, “
Effect of Superheat and Electric Field on Saturated Film Boiling
,”
Phys. Fluids
,
28
(
5
), p.
052102
.10.1063/1.4948545
47.
Pandey
,
V.
,
Biswas
,
G.
, and
Dalal
,
A.
,
2017
, “
Saturated Film Boiling at Various Gravity Levels Under the Influence of Electrohydrodynamic Forces
,”
Phys. Fluids
,
29
(
3
), p.
032104
.10.1063/1.4978056
48.
Pandey
,
V.
,
Biswas
,
G.
,
Dalal
,
A.
, and
Welch
,
S. W. J.
,
2018
, “
Bubble Lifecycle During Heterogeneous Nucleate Boiling
,”
ASME J. Heat Transfer
,
140
(
12
), p.
121503
.10.1115/1.4041088
49.
Chang
,
Y. C.
,
Hou
,
T. Y.
,
Meriman
,
B.
, and
Osher
,
S.
,
1996
, “
A Level Set Formulation of Eulerian Interface Capturing Methods for Incompressible Fluid Flows
,”
J. Comput. Phys.
,
464
(
124
), pp.
449
464
.10.1006/jcph.1996.0072
50.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.10.1016/0045-7825(79)90034-3
51.
Gerlach
,
D.
,
Tomar
,
G.
,
Biswas
,
G.
, and
Durst
,
F.
,
2006
, “
Comparison of Volume-of-Fluid Methods for Surface Tension-Dominant Two-Phase Flows
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
740
754
.10.1016/j.ijheatmasstransfer.2005.07.045
52.
Puckett
,
E. G.
,
Almgren
,
A. S.
,
Bell
,
J. B.
,
Marcus
,
D. L.
, and
Rider
,
W. J.
,
1997
, “
A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows
,”
J. Comput. Phys.
,
130
(
2
), pp.
269
282
.10.1006/jcph.1996.5590
53.
Welch
,
S. W. J.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.10.1006/jcph.2000.6481
You do not currently have access to this content.