Abstract

This study presents local temperature and heat transfer coefficient distributions obtained experimentally on the internal surfaces of a rotating pin-finned brake rotor at realistic rotation speeds for braking (i.e., N = 100–300 rpm). To this end, the thermochromic liquid crystal technique in a rotating reference frame was employed. The results demonstrate that the bulk airflow within the ventilated channel of a rotating disk follows a predominantly backward sweeping inline-like path between the pin fins. Internal local heat transfer is distributed nonuniformly on both inboard and outboard surfaces, with twice higher average cooling from the outboard surface than the inboard surface: this possibly exacerbates the thermal stresses, which leads to thermal distortion of the rotor (i.e., coning).

References

References
1.
McPhee
,
A. D.
, and
Johnson
,
D. A.
,
2008
, “
Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
458
467
.10.1016/j.ijthermalsci.2007.03.006
2.
Limpert
,
R.
,
2011
,
Brake Design and Safety
,
SAE International
,
Warrendale, Pittsburgh, PA
, p.
58
.
3.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1969
, “
Temperature Distributions in Disc Brakes
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
185
194
.10.1243/PIME_AUTO_1969_184_020_02
4.
Ramachandra Rao
,
V. T. V. S.
,
Ramasubramanian
,
H.
, and
Seetharamu
,
K. N.
,
1989
, “
Analysis of Temperature Field in Brake Disc for Fade Assessment
,”
Wärme-Und Stoffübertragung (Heat Mass Transfer)
,
24
(
1
), pp.
9
17
.10.1007/BF01599500
5.
Gerrard
,
M. D.
,
1993
, “
Thermal Distortion of Ventilated Brake Discs
,” M.Sc. thesis,
Durham University
, Durham, UK.
6.
Mackin
,
T. J.
,
Noe
,
S. C.
,
Ball
,
K. J.
,
Bedell
,
B. C.
,
Bim-Merle
,
D. P.
,
Bingaman
,
M. C.
,
Bomleny
,
D. M.
,
Chemlir
,
G. J.
,
Clayton
,
D. B.
,
Evans
,
H. A.
,
Gau
,
R.
,
Hart
,
J. L.
,
Karney
,
J. S.
,
Kiple
,
B. P.
,
Kaluga
,
R. C.
,
Kung
,
P.
,
Law
,
A. K.
,
Lim
,
D.
,
Merema
,
R. C.
,
Miller
,
B. M.
,
Miller
,
T. R.
,
Nielson
,
T. J.
,
O'Shea
,
T. M.
,
Olson
,
M. T.
,
Padilla
,
H. A.
,
Penner
,
B. W.
,
Penny
,
C.
,
Peterson
,
R. P.
,
Polidoro
,
V. C.
,
Raghu
,
A.
,
Resor
,
B. R.
,
Robinson
,
B. J.
,
Schambach
,
D.
,
Snyder
,
B. D.
,
Tom
,
E.
,
Tschantz
,
R. R.
,
Walker
,
B. M.
,
Wasielewski
,
K. E.
,
Webb
,
T. R.
,
Wise
,
S. A.
,
Yang
,
R. S.
, and
Zimmerman
,
R. S.
,
2002
, “
Thermal Cracking in Disc Brakes
,”
Eng. Failure Anal.
,
9
(
1
), pp.
63
76
.10.1016/S1350-6307(00)00037-6
7.
Limpert
,
R.
,
1975
, “
The Thermal Performance of Automotive Disc Brakes
,”
SAE Paper No. 750873
.10.4271/750873
8.
Newcomb
,
T. P.
, and
Millner
,
N.
,
1965
, “
Cooling Rates of Brake Drums and Discs
,”
Proc. Inst. Mech. Eng.
,
180
(
Pt 2A, 1
), pp.
191
205
.10.1243/PIME_AUTO_1965_180_019_02
9.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Paccchiana
,
P.
, and
Goller
,
R.
,
2005
, “
Aero-Thermal Characteristics of an Automotive CCM Vented Brake Disc
,”
SAE Paper No. 2005-01-3930
.10.4271/2005-01-3930
10.
Wallis
,
L. M.
,
2003
, “
A Comparison of Bi-Directional Disc Brake Rotor Passage Designs
,” Ph.D. dissertation,
The University of New South Wales
,
Sydney, Australia
.
11.
Wallis
,
L.
,
Leonardi
,
E.
,
Milton
,
B.
, and
Joseph
,
P.
,
2002
, “
Air Flow and Heat Transfer in Ventilated Disc Brake Rotors With Diamond and Tear Drop Pillars
,”
Numer. Heat Transfer, Part A
,
41
(
6–7
), pp.
643
655
.10.1080/104077802317418269
12.
Barigozzi
,
G.
,
Cossali
,
G. E.
,
Perdichizzi
,
A.
,
Boden
,
A.
, and
Paccchiana
,
P.
,
2002
, “
Experimental Investigation of the Mean and Turbulent Flow Characteristics at the Exit of Automotive Vented Brake Discs
,”
SAE Paper No. 2002-01-2590
.10.4271/2002-01-2590
13.
Lakshminarayana
,
B.
,
1996
,
Fluid Dynamics and Heat Transfer of Turbomachinery
,
Wiley
,
New York
, p.
654
.
14.
Barigozzi
,
G.
,
Perdichizzi
,
A.
, and
Donati
,
M.
,
2008
, “
Combined Experimental and CFD Investigation of Brake Discs Aero-Thermal Performances
,”
SAE Paper No. 2008-01-2550
.10.4271/2008-01-2550
15.
Palmer
,
E.
,
Mishra
,
R.
, and
Fieldhouse
,
J.
,
2008
, “
A Computational Fluid Dynamic Analysis on the Effect of Front Row Pin Geometry on the Aero-Thermodynamic Properties of a Pin-Vented Brake Disc
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
7
), pp.
1231
1245
.10.1243/09544070JAUTO755
16.
Mew
,
T. D.
,
Kang
,
K. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Transient Thermal Response of a Highly Porous Ventilated Brake Disc
,”
Proc. Inst. Mech. Eng., Part D
,
229
(
6
), pp.
674
683
.10.1177/0954407014567516
17.
Yan
,
H. B.
,
Mew
,
T.
,
Lee
,
M. G.
,
Kang
,
K. J.
,
Lu
,
T. J.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2015
, “
Thermofluidic Characteristics of a Porous Ventilated Brake Disk
,”
ASME J. Heat Transfer
,
137
(
2
), p.
022601
.10.1115/1.4028864
18.
Metzger
,
D. E.
, and
Larson
,
D. E.
,
1986
, “
Use of Melting Point Surface Coatings for Local Convective Heat Transfer Measurements in Rectangular Channel Flows With −90 Deg Turns
,”
ASME J. Heat Transfer
,
108
(
1
), pp.
48
54
.10.1115/1.3246903
19.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
(
1
), pp.
52
59
.10.1115/1.2927737
20.
Gillespie
,
D. R. H.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Kohler
,
S. T.
,
1998
, “
Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry
,”
ASME J. Turbomach.
,
120
(
1
), pp.
92
99
.10.1115/1.2841394
21.
Ireland
,
P. T.
,
Neely
,
A. J.
,
Gillespie
,
D. R. H.
, and
Robertson
,
A. J.
,
1999
, “
Turbulent Heat Transfer Measurements Using Liquid Crystals
,”
Int. J. Heat Fluid Flow
,
20
(
4
), pp.
355
367
.10.1016/S0142-727X(99)00030-2
22.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.10.1088/0957-0233/11/7/313
23.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
24.
Yan
,
Y.
, and
Owen
,
J. M.
,
2002
, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
29
35
.10.1016/S0142-727X(01)00125-4
25.
Newton
,
P. J.
,
Yan
,
Y.
,
Stevens
,
N. E.
,
Evatt
,
S. T.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2003
, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal—Part 1: An Improved Technique
,”
Int. J. Heat Fluid Flow
,
24
(
1
), pp.
14
22
.10.1016/S0142-727X(02)00206-0
26.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
6
), pp.
793
801
.10.1243/09576509JPE464
27.
Steurer
,
A.
,
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Retzko
,
S.
,
2019
, “
Application of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages
,”
ASME J. Turbomach.
,
141
(
5
), pp.
1
9
.10.1115/1.4041807
28.
Baughn
,
J. W.
,
Anderson
,
M. R.
,
Mayhew
,
J. E.
, and
Wolf
,
J. D.
,
1999
, “
Hysteresis of Thermochromic Liquid Crystal Temperature Measurement Based on Hue
,”
ASME, J. Heat Transfer
,
121
(
4
), pp.
1067
1072
.10.1115/1.2826057
29.
Mills
,
A. F.
,
1995
,
Basic Heat and Mass Transfer
,
Irwin
,
Chicago, IL
, p.
147
.
30.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
,
London
, pp.
306
494
.
31.
Schneider
,
P. J.
,
1955
,
Conduction Heat Transfer
,
Addison-Wesley Publishing Company Inc
,
Reading
, MA, pp.
263
265
.
32.
Kim
,
T.
,
2004
, “
Fluid-Flow and Heat-Transfer in a Lattice-Frame Material
,” Ph.D. dissertation,
University of Cambridge
,
Cambridge, UK
.
33.
Kim
,
T.
,
Hodson
,
H. P.
, and
Lu
,
T. J.
,
2004
, “
Fluid-Flow and End-Wall Heat Transfer Characteristics of an Ultralight Lattice-Frame Material
,”
Int. J. Heat Mass Transfer
,
47
(
6–7
), pp.
1129
1140
.10.1016/j.ijheatmasstransfer.2003.10.012
34.
Kays
,
W. H.
,
1966
,
Convective Heat and Mass Transfer
,
McGraw-Hill Book Company
,
New York
, pp.
133
137
.
35.
Myers
,
G. E.
,
1987
,
Analytical Methods in Conduction Heat Transfer
,
Genium Publishing Corp
.,
New York
, pp.
153
163
.
36.
Coleman
,
H. W.
, and
Steel
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers Second Edition
,
Wiley
,
New York
, p.
10
.
37.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J Fluids Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
38.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
39.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,” D.Phil. thesis,
University of Oxford
,
Oxford, UK
.
40.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary Layer Theory
,
Springer
,
Heidelberg
, pp.
18
23
.
41.
Stephens
,
A.
,
Watkins
,
S.
, and
Dixon
,
C.
,
2003
, “
Aerodynamic Testing of a Vented Disc Brake
,”
SAE Paper No. 2003-01-0932.
You do not currently have access to this content.